Frysk: Debugger/Monitoring Tool

Overview

The primary goal of the Frysk project is to provide an intelligent, state-of-the-art tool for developers
and systems administrators that enables them to monitor the inner-workings of processes within a
system or multiple systems and alert them if/when problems occur. Frysk is designed to “observe”
processes as unobtrusively as possible and detect problems at a point in time when the user can
interrogate the errant process to get useful information before it exits the cpu queue. This information
will help either resolve the problem or will result in data that will help narrow the problem down to
where the next debug run can be more intelligently instrumented so it will harvest even more and better
data or resolve the problem altogether.

The key difference between Frysk and most of the available open source Linux debuggers is that once
the errant process has been identified, the user can then utilize Frysk to attach “observers” to it that will
stop the process at any sign of trouble or a user-defined behavior is detected. In the case of an errant
process, it is stopped while useful information can be retrieved via backtraces, retrieving variable
values, setting breakpoints, etc. When a Frysk-observed process misbehaves, the user can have Frysk
perform several actions including having e-mails sent, having warning windows appear, having a
“debug” window appear with the source code in it that the user can set breakpoints, look at variable
values, etc. and/or having other processes/scripts activated and a whole list of other options.

Frysk is basically divided into two major pieces of functionality: a monitoring function where the user
can watch the actions of various processes through a feature called “observers”; and a debugger that
the user can activate either via an observer from the monitoring side of Frysk or as an independent task
that has no connection to the monitoring side.

Observer Concept

The “observer” model Frysk uses is based on the Java “Observable” class. Basically the theory of
operation here is that when an “observer” is attached to a process and/or a thread within a process(from
now on when process is mentioned, the entire process or a thread within a process is implied), it
reports back to the process that initiated the observer(Frysk in this case) that the behavior has occurred.

Now the question is, what kinds of observers may be attached? The following observers may currently
be attached to a process:

Exec — Monitor a process for a call to the “exec” function

Frysk Documentation 1.0
Page 1

Fork — Monitor a process for a call to the “fork™ function

Task Clone — Monitor a process for a clone operation

Task Terminating — Monitor a process for any activity for it to exit the cpu queue
Syscall — Monitor a process for any system call

Custom — Apply one of the above filters with filtering

When these observers are attached to a process, the user can define how they want Frysk to respond to
the observer being triggered. These user-defined responses are enumerated in the previous section and
described later in this document.

The custom observer is basically any of the other five observers with filtering applied. For example,
if the user wants to monitor a task with an exec observer, but only wants an action to occur only when
a certain task or certain tasks are exec'ed, then the custom observer would be used. If the user wants

an action to occur when any exec call is made, the exec observer would be used.

Defining a Debug Session

On a system that Frysk has been installed on via an rpm, start Frysk from the “System Tools”” menu by
clicking on the Frysk icon. Here is the first window that appears for Frysk.

Frysk Documentation 1.0
Page 2

£) EDebug an Existing Process:

C) Open Blank Session with a Terminal

(@ Run or Manage Sessions

Frysk Initial Start-up Screen

This is the initial Frysk start-up screen. From this screen the user may launch into either the
monitoring part of Frysk or the debug part of Frysk. This document will begin with the monitoring
side.

The default selection is for the Frysk monitoring side as indicated by the Run or Manage Sessions
radio button being selected. Since there are currently no sessions defined as indicated by the blank
white area of the screen, debug sessions must be defined before monitoring can occur. Basically, a
“debug session” consists of a process or group of processes that a user has attached observers to.
Several debug sessions can be defined.

So, to start the monitoring part of Frysk, at least one debug session must be defined. The user can
define a debug session by clicking the New button to cause the following window to appear.

Frysk Documentation 1.0
Page 3

€D Select a Name for the session, and some Process Groups to monitor

Session Name: |New Frysk Session l

Process Groups Observed Process Groups

[v]

mixer_applet2
clock-applet

notification-area-applet

gam_server

bash (5 child processes) B
thunderbird-bin

gnome-screensaver F E‘
xchat

gnome-terminal (1 child process

evince il

swriter.hin

ar)

(4]

[¥ Cancel

Frysk Create Debug Session

From this window a debug session can be created by selecting the process or group(s) of processes.
The list of processes is derived from the cpu queue list of processes that the current user owns. (Frysk
does not allow a user to monitor/debug processes that they do not own.) For example, if bash was

chosen from the list on the left, all of the child processes that bash has activated would also be selected.

So, select the process(es) of interest from the Process Groups list and place the in the Observed
Process Groups list by either double-clicking them or single-clicking and then clicking on the right-

arrow button. Processes mistakenly selected can be removed by selecting them and clicking the left-
arrow button.

So, select a process and place it into the Observer Process Groups. The Forward button now
becomes active enabling the user to progress to the next step in defining a debug session. Clicking on
that button brings up the next window enabling the user to attach whatever observers they desire.

Frysk Documentation 1.0
Page 4

Create a Frysk Debug Session =)

o Choose which (if any) Observers to add for each Process Group

Process Groups Observers

[0 Fork Observer

[0 Terminating Observer
O Clone Observer
[Syscall Observer

[5? Create a Custom Observer

Observer Description

[4@ Back] [+f Einish l [xgance|]

Create a Frysk Debug Session (Page 2)

This window is where the Observers get attached to the Process Groups. If there are multiple Process
Groups, each one can have its own unique set of observers. If all a user wants to do is monitor a
process group with one of the five observers and have a log or graph of each time a selected observer
“fires”, then simply select the desired observer(s) and click Finish.

Custom Observer Creation

If a user wants to do more than log/graph observer firings, then a custom observer must be created.
This allows more control over an observer by allowing filters to be applied that more narrowly focuses
one of the five other observer and gives much more precise control over when the observer fires. Click
on the Create a Custom Observer button to begin the custom observer creation process.

Frysk Documentation 1.0
Page 5

Fryslc Custom Observers

Observers

E;.‘ecobsewer =
Fork Observer :

Terminating Obsernver
Clone Observer Biidicin

Syscall Observer

| ey | [Xcancel | [Do

S

Create Custom Observer First Window

From this window the user is given several options. Usually the five core observers shown here should
be left alone and a new observer created. Click the New button to create a totally new observer from
the following window.

Frysk Documentation 1.0
Page 6

N ol ooltip

Description

Event [Select an item... » I

|Select an item... |+ l [Select an item... |« l [l E]
|Se|ect an item... | - [l E]

After actions are finished:
(3 Resume thread

() Stop thread

O Ask me

Filters

Actions

¥ Cancel

Frysk Custom Observer Details Window

From this window the name of the custom observer is defined and a brief description can be entered in
the first two fields. The Event field is where one of the five core observers is chosen as a basis for this
observer. The Filters field is where one or more filters may be applied to control when this observer
fires. As many filters as is desired may be applied for a custom observer. Just click the “+” button to
add more filters and click the “—* button to delete the currently-selected filter. The Actions field

allows the definition of an action or a series of actions to be performed when the observer fires.

For example, suppose a user wanted to observe a process and stop it and look at the source code
whenever it tried to execute a process named foo. The Frysk Custom Observer Details window
would look something like the following.

Frysk Documentation 1.0
Page 7

Name foo observer

Meonitors for when foo is executed

Description

Event l Exec Observer v ‘

|Nameofexecing thread . ‘ Iis] l [foo] |E |3

Filters

Actions

| Show source code of execing thread v l | l |m |:

After actions are finished:
() Resume thread

top rhreadE

[xgance|][& oK]

Example of a Defined Custom Observer Based on an Exec Observer Filtered on Foo

The above-defined custom observer, when attached to a process, looks for that process to exec another
process named foo and when that occurs the observer would perform the selected action. In this case
the custom observer would bring up a source window showing the code that is being executed and the
process exec'ing foo would be stopped per the instructions defined for After actions are finished. As
mentioned earlier, more filters/action can be applied. For example, if the user wanted to also watch for
any occurrences of the process bar being executed, another filter could be added the same as for foo.

So the process would be stopped upon any execution of either foo or bar.

Logic can also be reversed for filters. That is, if you wanted to stop the process upon execution of any
process other than bar, the filter could be changed from is to is not. There are also several other
actions that can be performed when the observer fires such as printing the state of the exec'ing thread,
showing the memory or register window of the executing thread, and others.

As can be seen from this example, custom observers provide very powerful capabilities to the user.
This feature is a great differentiator from the rest of the open source debuggers and adds a great deal of
utility for Frysk.

When all definitions are complete, click on OK to complete the definition of this custom observer and

Frysk Documentation 1.0
Page 8

return to the Frysk Custom Observers window where it should be listed in the Observers pane. This
observer is now available to be attached to any process or group of processes just like any of the core
observers.

Starting a Debug Session

Once at least one debug session has been defined, the monitoring part of Frysk can be activated. So to
start a debug session, make sure the Run or Manage Sessions radio button is selected, then select the
desired session in the window of the startup screen and either double-click it or single-click the session
and then click Open.

(_) Debug an Existing Process

() Open Blank Session with a Terminal

@ Run or Manage Sessions

| @aut || eopen |

Frysk Startup Manager with a Debug Session Defined

Once a debug session has been selected and opened, the monitoring part of Frysk begins. Sometimes
an interim window called a Process Picker will appear if there are multiple PID's in the cpu queue
with the same name. In the above example a bash observer has been selected and when the Open

button is clicked the following screen appears.

Frysk Documentation 1.0
Page 9

Frysk/PID Selection

Please select which PIDs
you would like to examine:

EPmces ses -
i bash
15400
16189
18752
18772

19108 -
. i3

B E A A

E

l ¥ Cancel l [E}Earwardl

Debug Session Process Picker Window

As can be seen above there are multiple bash processes currently in the cpu queue. The user can either
select a single PID or all or any number in between to monitor. Once the desired PID(s) have been
selected, click the Forward button to continue. The main Frysk monitoring window should appear and

look something like this.

e Frysk Monitor

File Observers Help

" S|

PID Command
7588 bash
7627 bash
18752 thunderbird
18772 run-mozilla.sh
19108 bash
15400 soffice
16189 bash . =i

Threads:

Main Log

Initial Frysk Monitoring Window

Frysk Documentation 1.0
Page 10

As you can see, the initial Frysk screen is divided into 4 areas or “panes”: Processes, Status, Threads
and Main Log. The upper left view currently has one tab for Processes. In the Process pane is a list
of all of the processes defined(and possibly selected in the Process Picker window) for this debug
session. To activate the Status and Threads panes, simply click on one of the processes in the

Processes pane.

Eile Observers Help
Processes Status
PID Command (] Legend Interval Hold
7588 P BEyec Observer 10 IRl
= =T T}——| [Center
7627 bash l:_.]
bash: 0 =
18752 thunderbird Task 7588 : 1
18772 run-mozilla.sh I
19108 bash
15400 soffice
16189 bash (=]
Threads:
PID Entry Functions L]|
: Gl [+)
Main Log
/bin/bash

Screenshot of a Selected Process

With the selection of a process, the Status and Threads panes become active. The Threads pane is
self-explanatory as it will contain a list of the threads of the selected process. The Status pane is
basically a timeline of the observer firings for the selected process/thread. A blip would appear on the
line anytime one of the observers attached to that process fires. There are controls at the top of the
timeline to change the length of time viewed in the pane, allows the user to start/stop the timeline and

to center the data in the pane.

The following screenshot shows a monitor window where a bash process is has three observers
attached, fork, exec and terminating. In this example, many forks have been executed and each one has
been recorded in the Main Log pane and plotted in the Status pane.

Frysk Documentation 1.0
Page 11

Eile Observers Help

Processes

PID Command VSZ RSS TIME
2543 thunderbird 4400 kB 1060 kB 0:00
2563 run-mozilla.sh 4396 kB 1072 kB 0:00

2676 bash 4584 kB 1516 kB 0:00

2713 bash 4580 kB 1528 kB 13:37
16806 soffice 4396 kB 1040 kB 0:00
Threads:
TID Entry Functions

rys ‘Monitor

Status

Legend

Interval

1395.55 sec on trace bash ; 0
Event = Fork Observer

1395.6 sec on trace bash ;: 0
Event = Fork Observer

1395.64 sec on trace bash ; 0
Event = Fork Observer

B Exec Observer ® Fork Observer 10
A Terminating Observer T
bash : 0
Task 2676 : 1

Other useful per-event information.

\Other useful per-event information.

Other useful per-event information.

(1]

Main Log

Thu Aug 31 10:32:23 EDT 2006 Fork Observer:
Thu Aug 31 10:32:23 EDT 2006 Fork Observer:
Thu Aug 31 10:32:23 EDT 2006 Fork Observer:

Thu Aug 31 10:32:23 EDT 2006 Fork Observer:
Thu Aug 31 10:32:23 EDT 2006 Fork Observer:

Thu Aug 31 10:32:23 EDT 2006 Fork Observer:

. 2676 TID:
: 2676 TID:
: 2676 TID:
2676 TID:
: 2676 TID:
: 2676 TID:

e Tk ol o | Y

forked ne
forked ne
forked ne
forked ne
forked ne
forked ne

S P

2676 Event:
2676 Event:
2676 Event:
2676 Event:
2676 Event:
2676 Event:

o Tk il RS

/bin/bash

4 = - ol

[+)

Frysk Monitor Window Showing Numerous Fork Events

The Main Log pane will show a line for every observer that fires with a time-stamp. The line will

contain information on which observer fired(since multiple observers can be attached to a

process/thread) and the host name where the event took place.

The Status pane shows the fork observer symbol on the timeline each time the observer fires. The user

can use the cursor to hover over an item on the line and a description will be displayed as shown above.

In the above screenshot there were three fork observers firing about the same time and so the three

events are displayed.

Attaching Additional Observers from the Monitor

Additional observers can be attached to the processes from the monitoring screen by right-clicking on a

Frysk Documentation 1.0
Page 12

process in the Processes pane or a thread in the Threads pane as shown below.

Frysk Monitor, |

File Observers Help

Processes Status
PID Command VSZ RSS TIME Legend Interval Hold
2543 thunderbird 4400 kB 1060 kB 0:00 i i 4 =
underbir : (= S
A Terminating Observer (7 [
2563 run-mozilla.sh 4396 kB 1072 kB 0:00 :
= 3 bash : 0 =
= ° Edit Columns... | = : Task 2676 : 1
2713 bast 1528 kB 13:37
| Refresh
16806 Sof'ﬁf Print state of 1040 kB 0:00
| Add observer 5
Threads:
TID Entry Functions Sl s
— © Syscall Observer
3 | |
(o] []
Main Log

Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne’
Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne’
Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne’
Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne
Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne
Thu Aug 31 10:32:23 EDT 2006 Fork Observer: PID: 2676 TID: 2676 Event: forked ne

PR P, TN W W T W W, U 5. il 1. Ll ot U Y SRR V] 3 YOG ¥k Ytion 1 1o T ik B eSO S R A [

o — [+]

fbin/bash

Adding Observers Via the Frysk Monitor Screen

Grayed out observers in the list have already been attached to the process. Be aware that any observers
added from the monitor window are only temporary for this monitoring session. Once the monitoring
window for a session is closed, any observers attached from the monitoring screen will not be attached
next time this session is opened again. To permanently attach observers, this must be done from the

Frysk Session Manager.

An observer can be attached to either the entire process(which basically attaches an observer to all of
the threads(tasks) in a process) or it can be attached to a particular thread. To attach an observer to all
of the threads in a process, use the process list in the Processes pane. To attach to a single thread
within a process use the Threads pane. Each process can have as many observers attached as the user
desires. Please bear in mind that each attached observer will consume a small percentage of system

Frysk Documentation 1.0
Page 13

resources.

Source Window

The source window feature of Frysk is currently very minimally operational. The only feature that is
operational right now is that it can be activated and “marked up” source code can be shown. The term
“marked up” means that keywords, variables, comments, etc. are highlighted. In the near future the
ability to bring up stacktraces will be added and soon after displaying variable values, stepping, etc.

F*NOTE* For the source window to work as expected on a process, that process must be compiled
with the -g option and the source code must be available somewhere. If it is not, when the source
window is activated the message ‘“No debug information for this stack frame” will be displayed where
the source code should appear.

Activation

The most common way to activate the source window is from the initial Frysk window. Simply select
the Debug an Existing Process radio button and click on the Click Here to Select an Existing Process
button to bring up a list of processes that the current UID/PID owns.

Frysk Documentation 1.0
Page 14

Debiig Process List

Please select a process to inspect in the source window
PID Process Name ~ | Locatien =
18920 bash /bin/
18417 bash /bin/
17134 bash fbin/
16806 bash /bin/
2713 bash /bin/
2676 bash /bin/
2563 bash /bin/
2543 bash /bin/
2484 bluez-pin fusr/bin/
2464 bonobo-activation-server fusr/libexec/
2541 clock-applet fusr/libexec/
2452 dbus-daemon [bin/
2453 dbus-aunch Jusr/bin/
2482 eggcups fusr/bin/
19121 firefox-hin fustflibffirefox-1.5.0.6f
19424 floaters Jusrflibexec/gnome-screensaverf
2537 gam_server Jusr/libexec/
2459 gconfd-2 fusrflibexec/ I
[{7 Open l [Xgancell

Screenshot of List of Processes to Attach Frysk Debugger To

Another way to activate the source window is to set that as as action to be performed when a custom
observer fires. When defining a custom observer the user can define many actions to be performed and
activating a source window is one of them. The following screenshot is an example of what a source
window is activated.

Frysk Documentation 1.0
Page 15

Source - thunderbird-bin Task 4598 - unattached

File Edit Program Stack
QO T oM ww £ & B v] lSOURCE .
Current Stack test6.cpp
test2.cpp 1 #include "common.h"
2 // this is a test pregram Tor the DOM
testﬁ.cpp 3
4 class myClass
5 {
B public:
7 inline int min(int y, int z);
8 }i
9
18 — int myClass::min(int vy, int z){
11 - if(y = z)
Varlable Traces 12 — return v;
Name | Value 13
14 — return z;
15 }
16
17 /4 main program
18 — int bleh()
19 {
20 — myClass &;
21— dnt 1= a.min(l,2);
22 — int + = =.min(3,4);
23 — return 0;
24 }

Screenshot of Source Window

As can be seen above, the source window is divided into 4 sections: the toolbar, Current Stack,
Variable Traces and the view of the source itself. The Current Stack view shows the list of
functions/tasks that have been defined for this process and the Variable Traces view has the variable
values of any variables the user has selected to follow. The only windows with meaningful information
in them at this point are the Current Stack and the window containing the source code.

Toolbar

Hovering the mouse cursor over each icon on the toolbar provides a useful tooltip explaining its
function if the icon itself is not explanatory enough. Symbols that are universally-accepted to
developers are used. As can be seen in the screenshot, all of the functionality required to easily and
efficiently debug applications is available. The grayed out icons are for future functionality.

In addition to the icons on the toolbar, there are two other items. The item on the far right is a

Frysk Documentation 1.0
Page 16

pulldown window that provides a selection of how the source window should be displayed. The
choices are: SOURCE, SOURCE/ASM, ASM, MIXED. As of right now, only SOURCE is supported.
More info will be provided as these features are implemented.

To the left of the pulldown is a “Jump to Function” field. On the right-hand side of the field is a down-
arrow indicating there are already some pre-built “jump” entries. Frysk automatically puts the name of
each of the functions contained within the current source window there as a help to the developer. If

the developer wants to search for other strings within the source window, press CTRL-F and the “Find”

toolbar will appear at the bottom of the screen as shown in the following screenshot.

File Edit Program 5Stack
: T T T = & B ‘ v||SOURCE .
Current Stack test6.cpp
test2.cpp L #include "common.h" E
2 ff this is a test program for the DOM
3
4 class myClass
5 {
5] public:
7 inline int min({int v, int z);
g 1
9
18 — int myClass::min(int v, int z){
11 — if(y = z)
Variable Traces 12 — return vy;
Name WValue 13
14 — return z;
15 }
16
17 f/ main program |
18 — int bleh{} =)
x Find: [] 4} Find Next ¢ Find Previous Highlight Al [] Case Sensitive
Goto Line: [] 8 Go

Screenshot of Source Window with “Find” Toolbar Enabled

As can be seen above, the “Find” mechanism within Frysk is based loosely on the Firefox was of
searching. Another way of activating the “Find” toolbar is to left-click on the “Edit” pulldown on the
toolbar and select “Find” from the items on the pulldown.

Frysk Documentation 1.0
Page 17

Source Window

Much thought has gone into the design of the source window incorporating many of the nice features
of many open source GUI debuggers, plus a few more features have been/are being added. First, in the

[T

left-hand column, the line numbers appear and to the right of each line number is a “-”(minus sign) if

the line has executable code or is blank if not.

Inside the main source window where the example C++ code resides, notice that there is key-word
highlighting. Variable names are in one color, function names in another, C++ keywords in another,
etc.

A nice feature that has been implemented in the source window in Frysk is the ability to view expanded
inline code on demand. To illustrate this feature, click on the “test2.cpp” in the “Current Stack”
window to bring up its source code. Line 12 is outlined in green indicating that line contains an inline
function, “bar”. Move the cursor over the line number column for line 12 and you will see the cursor
convert to a “finger pointer” which means this area can be clicked on. Left-click in this area and notice
that the inline function gets expanded to show what the code that makes up the “bar” function. A
whole new column with line numbers and all is presented.

Notice that there is another line outlined in green, the line containing “baz”, which is also an inline
function. Move the cursor over the line number for “baz” and then left-click and the source lines for it
will be shown, line numbers and all. The current plan is to enable a developer to be able to put break
points on lines within inline functions. Below is a screenshot of this feature.

Frysk Documentation 1.0
Page 18

Source - bash Task 2597 - unattached

File Edit Program Stack

@OTTTT BT EE B -| [souree -
Current Stack test2.cpp

test2.cpp

testé.cpp

[+)

* Get whatewver bar() says and print it out

*f

... 1levels hidden

int baz(int n){
’,f*

Now
We're
Just
wasting
space
because
We

want

to

test
how

a

really
long
function
displays

Variable Traces

MName Value

* ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ X ¥

int foobar(){

}

L"-

Screenshot of Source Window Showing Inline Code Expanded

Some Other Planned Features (not a complete list, just the highlights)
Some other planned features are:

- Show variable values when hovering the mouse over a variable

- One-click tracing of variables

- One-click set-up of “printf” statements(aka tagsets)

- Register window view

Frysk Documentation 1.0
Page 19

- Memory window view

Installing/Building Frysk

Please be aware that, as of this writing, Frysk is a very new project, just a little over a year old. As
such, it is in a constant state of flux with new features being added almost every day and bugs being
fixed constantly. This being the case, it might be best at this stage of the Frysk project to check out the
latest source code from the CVS head and build it yourself. This will ensure you have the latest
version and all of the latest features and bug fixes.

Beginning with RHEL4U3(Red Hat Enterprise Linux Version 4 Update 3) and FC5(Fedora Core 5),
Frysk is available as a “technology preview”. Frysk will be added as a full-blown tool in the
FC6/RHELS releases. Every attempt is made to make sure Frysk will properly build on these
platforms as long as the latest compiler and associated libraries are installed.

Please visit the Frysk website at http://sourceware.org/frysk for instructions on building Frysk on
various os' and hardware architectures as well as the latest news on Frysk.

Getting Involved with Frysk

Please visit the following link to see how to join the Frysk developers on chat channels and mailing
lists: http://sourceware.org/frysk/getinvolved/

Frysk Documentation 1.0
Page 20

http://sourceware.org/frysk

