X-keys XKE-128 KVM Data Report

General Information

VID
05f3h
XKE-128 KVM PID #1
050Ah or 1290
XKE-128 KVM PID #2
050Bh or 1291
Consumer Usage Page
1
Usage Page
000Ch or 12

The XKE-128 KVM is a special X-keys device designed to work specifically with KVMs. In PID #2 the XKE-128 KVM is only a keyboard, no input or output reports are available thus making it compatible with KVM units. The information below is relevant only to PID #1 which does contain an input and output endpoint. Please note that the XKE-128 KVM in PID #1 will NOT be compatible with most KVMs, it must operate in PID #2 to be compatible. To convert the device to PID #1 when it is currently in PID #2 unplug the device then replug it in and press the Scroll Lock key repeatingly 10-15 times until the red LED flashes. The device gives 10 seconds after reboot to detect the Scroll Lock toggles. If it is not done quick enough, hotplug and try again. This procedure requires a regular keyboard to be attached to the computer for the Scroll Lock key. The device will revert to PID #2 (KVM mode) on reboot unless Reboot Mode (see output reports) was changed.

XKE-128 KVM is supported by P.I. Engineering Macroworks 3.1, X-key Basic Setup for PC users , P.I. Engineering SDK samples for Microsoft C# Express, VB 2010, (Microsoft C++ 2010 available upon request) and Linux.

X-keys XKE-128 KVM Input Report

Figure 1: X-keys XKE-128 KVM key reference.

PID #1 Endpoints: Endpoints: Consumer Usge Page Input and Output (Hid Usage Page 12, Hid Usage 1), Boot Mouse (Hid Usage Page 1, Hid Usage 2), Boot Keyboard (Hid Usage Page 1, Hid Usage 6).
PID #2 Endpoints: Boot Keyboard (Hid Usage Page 1, Hid Usage 6).

Report Length: 37 bytes.

1. General Incoming Data

This data is returned when new data is detected such as button presses, unit id change. This report can be manually stimulated by sending an output report: Generate Data which is very useful for obtaining the initial state of the device immediately after enumeration.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8
Byte 9
Byte 10
Byte 11
Byte 12
Byte 13
Byte 14
Byte 15
Byte 16
Byte 17
Byte 18
Byte 19
Byte 20
Bytes 21-32
Bytes 33-36
Byte 37
Constant Unit ID Data Type Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys Keys NumLck, CapsLck, ScrLck Reserved Time Stamp # of times rebooted
0
<data>
DT
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DS
value
Time
Reboot

DT: Data Type value of 0 or 2 indicates the following data is a General Incoming Data report, 2 if generated by the output report: Generate Data. Data Type value of 214 indicates a Descriptor Data Report, see below. Data Type value of 224 indicates a Custom Data Report, see below.
DI: For all bits 0 if key is up, 1 if key is down. Bits 1 to 8 correspond to the keys from top to bottom respectively of each column. For example a value of 3 in Byte 4 indicates that keys 0 and 1 are pressed.
DS: Bit 1=NumLock, bit 2=CapsLock, bit 3=ScrLock, bit 4=On Boot (sets the bit when device is booted up by the usb then sets it back to 0) .
Time: If enabled using output report: Enable Time Stamp gives a time in ms starting from when the device was plugged into a port in 4 bytes where byte 22 is the MSB and byte 25 is the LSB.

2. Descriptor Data

This data is returned after an output report: Request for Descriptor is sent. This report is available only in PID #1 and PID #4.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8
Byte 9
Byte 10
Byte 11
Byte 12
Byte 13
Byte 14
Byte 15
Byte 16
Byte 17
Bytes 18-37
Constant Unit ID Data Type Mode Key mapstart Layer2 Offset Constant Constant Max Columns Max Rows LED State Version PID Low PID Hi Keymapstart Hi Max Macro Address Lo Max Macro Address Hi Reserved
0
<data>
214
Mode
32
208
255
255
16
8
LEDs
<data>
PIDL
PIDH
0
MMAL
MMAH
value

Mode: 0 means device is in PID #1, 1 = PID #2, 2 = PID #3, 3 = PID #4.
LEDs: Device has 4 digital outputs, this byte tells the current state of the outputs. Bit 1 set means Out 1 is on, bit 2 set means Out 2 is on, bit 7 set means Green LED is on, bit 8 set means Red LED is on.
PIDL: LSB of the Product Identification number or PID.
PIDH: MSB of the Product Identification number or PID.
MMAL: LSB of the maximum macro address, for internal use only.
MMAH: MSB of the maximum macro address, for internal use only.

3. Custom Data

This data is returned after an output report: Generate Custom Data is sent. This report is available only in PID #1 and PID #4.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Bytes Count+5 to 36
Byte 37
Constant Unit ID Data Type Count of custom bytes to follow Custom byte 1 Custom byte 2 Custom byte 3... Reserved Increment
0
<data>
224
Count
B1
B2
B3...
value
Increment

Count: Number of custom bytes to follow.
B1: 1st custom byte.
B2: 2nd custom byte.
B3: 3rd custom byte and so on for as many bytes as specified in Count.
Increment: This byte is incremented each time a Custom Data report is sent thus even if 2 identical reports are sent they will both come in even if SuppressDuplicate reports is on.

4. Check Dongle Key

This is received immediately following a Check Dongle Key output report is sent. The four values R0-R3 are required to continue the check. See Dongle Implementation for further details.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Bytes 8 to 36
Constant Unit ID Data Type 1st byte returned from hash 2nd byte returned from hash 3rd byte returned from hash 4th byte returned from hash Reserved
0
<data>
193
R0
R1
R2
R3
value

R0: Value need for comparison to check for correct dongle key.
R1: Value need for comparison to check for correct dongle key.
R2: Value need for comparison to check for correct dongle key.
R3: Value need for comparison to check for correct dongle key.

X-keys XKE-128 KVM Output Report

The following types of output reports are shown in the summary below. These reports on only applicable when the device is in PID #1. Please be aware that several of these commands result in writing to the device's eeprom which has a limit to the number of writes allowed before it is "burnt out". The manufacturer's specification is 50,000 eeprom writes. Because of this we recommend the commands designated with e be executed rarely and not within timing loops. Note, the first byte listed in this documentation is 0 and represents the report ID. This is not present on some non-PC operating systems. So when sending an output report on Android for example, eliminate this byte.

Report
Format
Description
1
0, 186, LEDs, 0... Set LEDs
2
0, 179, LEDIndex, State, 0... Index Based Set LED (Flash)
3
0, 189, UnitID, 0... Set Unit IDe
4
0, 214, 0... Request Descriptor
5
0, 210, Enable, 0... Enable Time Stamp
6
0, 177, 0... Generate Data
7
0, 187, Bank 1 Intensity, Bank 2 Intensity, 0... Set Backlight Intensity
8
0, 184, 0... Toggle Backlights
9
0, 182, Bank, OnOff, 0... Turn On/Off Rows of Backlights
10
0, 181, Index, State, 0... Index Based Set Backlights (Flash)
11
0, 173, Bank, IncDec, Wrap, 0... Incremental Change of Backlight Intensity
12
0, 180, Freq, 0... Set Frequency of Flash
13
0, 199, Save, 0... Save Backlight State to EEPROMe
14
0, 204, Mode, 0... Change PIDe
15
0, 196, Change, 0... Reboot Modee
16
0, 201, Modifier, 0, HC1, HC2, HC3, HC4, HC5, HC6, 0... Keyboard Reflector
17
0, 203, Buttons, Mouse X, Mouse Y, Wheel X, Wheel Y, 0... Mouse Reflector (PID #1 only)
18
0, 195, Version LSB, Version MSB, 0... Set Version Numbere
19
0, 238, 0... Reboot Device
20
0, 192, K0, K1, K2, K3, 0... Set Dongle Keye
21
0, 193, N0, N1, N2, N3, 0... Check Dongle Key

eCommand writes to EEPROM, do not perform this command excessively, do not exceed 50,000 writes to EEPROM.

Endpoint: 4, Vendor Defined Usage Page.

Report Length: 36 bytes.

1. Set LEDs

One of two methods for controlling the LEDs.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command LED Control Constant
0
186
LEDs
0

LEDs: Bits 1-6=0, bit 7=1 to turn on Green LED or 0 to turn off Green LED, bit 8=1 to turn on Red LED or 0 to turn off Red LED.

2. Index Based Set LED (Flash)

One of two methods for controlling the LEDs. If flashing of LEDs is desired this method must be used.

Byte 1*
Byte 2
Byte 3
Byte 4
Bytes 5-36
Constant Command LED Index LED State Constant
0
179
LEDIndex
LEDState
0

LEDIndex: 6 = green, 7 = red.
LEDState: 0 = off, 1 = on and 2 = flash. Set the frequency of the flash with output report: Set Frequency of Flash.

3. Set Unit ID

Send this output report to set the Unit ID of the device. This is useful if connecting more than one of the same device to the a computer.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Unit ID (0-255) Constant
0
189
value
0

4. Request Descriptor

After sending this output report a Descriptor input report will be generated.

Byte 1*
Byte 2
Bytes 3-36
Constant Command Constant
0
214
0

5. Enable Time Stamp

By default the Time Stamp feature is enabled. To turn off send this command with Byte 3=0.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Enable Constant
0
210
0=off, 1=on
0

6. Generate Data

After sending this output report a General Incoming Data input report will be generated with bit 2 of Byte 3 set (see General Incoming Data). This is useful in determining the initial state of the device before any data has changed.

Byte 1*
Byte 2
Bytes 3-36
Constant Command Constant
0
177
0

7. Set Backlight Intensity

Byte 1*
Byte 2
Byte 3
Byte 4
Bytes 5-36
Constant Command Bank 1 Intensity Bank 2 Intensity Constant
0
187
Intensity
Intensity
0

Intensity: 0-255 where 0 is no intensity for that color or off, and 255 is the brightest. Usabe range is actually much narrower.

8. Toggle Backlights

Byte 1*
Byte 2
Bytes 3-36
Constant Command Constant
0
184
0

9. Turn On/Off Rows of Backlights

Send this output report to either turn on or off rows of the backlights.

Byte 1*
Byte 2
Byte 3
Byte 4
Bytes 5-36
Constant Command Bank # State Constant
0
182
Bank
OnOff
0

Bank: 0 = bank 1, 1 = bank 2.
OnOff: For all bits 0 for no backlighting, 1 for backlighting. Bit 0 = 1st row, bit 1=2nd row, bit 2=3rd row, bit 3=4th row, bit 4=5th row, bit 5=6th row. Note the intensities are not affected by this command.

10. Index Based Set Backlights (Flash)

Control of individual backlights.

Byte 1*
Byte 2
Byte 3
Byte 4
Bytes 5-36
Constant Command Key Index State Constant
0
181
Index
State
0

Index: For bank 1 the index is 0-127, where 0-7 is 1st column, 8-15 is 2nd column, etc. For bank 2 add 128 to the bank 1 indices. For example to control the lowest left key bank 1 index=7, the corresponding bank 2 is index=135.
State: 0 = off, 1 = on and 2 = flash. Set the frequency of the flash with output report: Set Frequency of Flash.

11. Incremental Change of Backlight Intensity

Send this output report consecutively to step through 10 levels of intensity of the backlights.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Bytes 6-36
Constant Command Bank # Increment/Decrement Wrap/No Wrap Constant
0
173
Bank
IncDec
Wrap
0

Bank: 0 = bank 1, 1 = bank 2.
IncDec: 0=decrease, the intensity will decrease each time this command is sent and either wrap around to the brightest setting or stay off depending on Wrap or 1=increase, the intensity with increase each time this command is sent and either wrap around to off or stay at the brightest setting depending on Wrap.
Wrap: 0=wrap, when the highest (or lowest depending on IncDec) intensity setting it reached the next command will wrap around to the lowest (or highest depending on IncDec), 1=No wrap, when the highest (or lowest) intensity setting is reached consecutive commands will do nothing.

12. Set Frequency of Flash

Use this output report to control the frequency of the flashing of both the indicator LEDs and the backlights, same frequency is used for both.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Frequency Constant
0
180
Freq
0

Freq: 1-255 where 1 is the fastest flash and 255 is the slowest. 255 is approximately 4 seconds between flashes.

13. Save Backlight State to EEPROM

Send this output report to change the default backlighting on startup of device to the current backlight state, ie, what ever backlights are on or off at the time this report is sent will be the new default.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Save Constant
0
199
Save
0

Save: Any value other than 0 will save the current backlight state to the EEPROM so when the device is replugged it will display this save backlighting. Note because there is a limited number of times the EEProm can be written to, it is not a good idea to do this often.

14. Change PID

Send this output report to change from PID #1 which is the programming mode to PID #2 which is the KVM operating mode. To change from PID #2 (KVM PID) to PID #1 unplug the device, replug and tap the main keyboard's Scroll Lock key 10-15 times within 10 seconds of replugging it. IMPORTANT: after converting to PID #1 the user must manually convert back to PID #2, it will not automatically revert on reboot.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Mode Constant
0
204
Mode
0

Mode: 1 for PID #2 (KVM operating mode).
PID #1 Endpoints: Endpoints: Consumer Usge Page Input and Output (Hid Usage Page 12, Hid Usage 1), Boot Mouse (Hid Usage Page 1, Hid Usage 2), Boot Keyboard (Hid Usage Page 1, Hid Usage 6).
PID #2 Endpoints: Boot Keyboard (Hid Usage Page 1, Hid Usage 6).

15. Reboot Mode

Send this output report to determine if the device will automatically return to PID #2 (KVM) on each reboot or if it will remain in the current PID between reboots.

Byte 1*
Byte 2
Byte 3
Bytes 4-36
Constant Command Change Constant
0
196
Change
0

Change: 0 to have device remain in its current PID (PID #1) between reboots, 1 to have the device always revert to PID #2 at every reboot.

16. Keyboard Reflector

Sends native keyboard messages.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8
Byte 9
Byte 10
Bytes 11-36
Constant Command Modifier Constant Hid Code 1 Hid Code 2 Hid Code 3 Hid Code 4 Hid Code 5 Hid Code 6 Constant
0
201
Modifier
0
HC1
HC2
HC3
HC4
HC5
HC6
0

Modifier: Bit 1=Left Ctrl, bit 2=Left Shift, bit 3=Left Alt, bit 4=Left Gui, bit 5=Right Ctrl, bit 6=Right Shift, bit 7=Right Alt, bit 8=Right Gui.
HC1=Hid Code for 1st key down, or 0 to release previous key press in this byte position.
HC2=Hid Code for 2nd key down, or 0 to release previous key press in this byte position.
HC3=Hid Code for 3rd key down, or 0 to release previous key press in this byte position.
HC4=Hid Code for 4th key down, or 0 to release previous key press in this byte position.
HC5=Hid Code for 5th key down, or 0 to release previous key press in this byte position.
HC6=Hid Code for 6th key down, or 0 to release previous key press in this byte position.

17. Mouse Reflector

Sends native mouse messages.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Bytes 8-36
Constant Command Buttons Mouse X Mouse Y Constant Wheel Y Constant
0
203
Buttons
X
Y
0
WY
0

Buttons: Bit 1=Left, bit 2=Right, bit 3=Center, bit 4=XButton1, bit 5=XButton2.
X=Mouse X motion. 128=0 no motion, 1-127 is right, 255-129=left, finest inc (1 and 255) to coarsest (127 and 129).
Y=Mouse Y motion. 128=0 no motion, 1-127 is down, 255-129=up, finest inc (1 and 255) to coarsest (127 and 129).
WY=Wheel Y. 128=0 no motion, 1-127 is up, 255-129=down, finest inc (1 and 255) to coarsest (127 and 129).

Example 1: Move mouse 1 mickey, the finest increment.
x+: 0, 203, 0, 1, 0, 0, 0
x-: 0, 203, 0, 255, 0, 0, 0
y+: 0, 203, 0, 0, 1, 0, 0
y-: 0, 203, 0, 0, 255, 0, 0

Example 2: Wheel Y with increment of 5.
+ motion: 0, 203, 0, 0, 0, 0, 5
- motion: 0, 203, 0, 0, 0, 0, 250 where 250=255-5

Example 3: Left button click.
left button down: 0, 203, 1, 0, 0, 0, 0
left button up: 0, 203, 0, 0, 0, 0, 0

Example 4: Left button down and drag
with mouse at starting position: 0, 203, 1, 0, 0, 0, 0
move mouse with button down: 0, 203, 1, 30, 30, 0, 0
release button: 0, 203, 0, 0, 0, 0, 0

18. Set Version Number

Send this output report to set the Version of the device. This is not the firmware version given in the descriptor but a 2 byte number available on enumeration. The value is "remembered" so if it is changed, using this report, the device must be rebooted. The device can be rebooted by replugging it or by sending the output report : Reboot Device. The device is also rebooted when changing pids using output report: Change PID.

Byte 1*
Byte 2
Byte 3
Byte 4
Bytes 5-36
Constant Command Version LB (0-255) Version HB (0-255) Constant
0
195
value
value
0

19. Reboot Device

Send this output report to reboot the device without having to unplug it. After sending this report the device must be re-enumerated.

Byte 1*
Byte 2
Bytes 3-36
Constant Command Constant
0
238
0

20. Set Dongle Key

Sets the user entered key. Remember these numbers as they are required to check for the key. This is intented to be done once by the developer prior to sale. See Dongle Implemenation for more details.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Bytes 7-36
Constant Command 1st byte of key 2nd byte of key 3rd byte of key 4th byte of key Constant
0
192
K0
K1
K2
K3
0

K0: 1st byte of user determined dongle key, any number 1-254.
K1: 2nd byte of user determined dongle key, any number 1-254.
K2: 3rd byte of user determined dongle key, any number 1-254.
K3: 4th byte of user determined dongle key, any number 1-254.

21. Check Dongle Key

Checks the key that was entered in Set Dongle Key. This is intented to be done by the developer within their own software to determine if the connected X-keys device is the one they sold to the customer. 4 random bytes along with the actual key are entered into the DongleCheck2() hash function of the Piehid32.dll/PieHid32Net.dll which returns 4 bytes. Then after sending this output report a Check Dongle Key input report will be received containing the same 4 bytes returned from the hash if the key matches. See Dongle Implemenation for more details.

Byte 1*
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Bytes 7-36
Constant Command Random number Random number Random number Random number Constant
0
193
N0
N1
N2
N3
0

K0: 1st byte of a random number that was used in the hash, any number 1-254.
K1: 2nd byte of a random number that was used in the hash, any number 1-254.
K2: 3rd byte of a random number that was used in the hash, any number 1-254.
K3: 4th byte of a random number that was used in the hash, any number 1-254.

*This first byte may be omitted on some non-PC operating systems. On these systems the read and write lengths will be 1 byte smaller.

Back to top