GNAT Reference Manual

GNAT, The GNU Ada Compiler
For ccce version 4.7.0

(GCC)

AdaCore

Copyright (©) 1995-2008, Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “GNAT
Reference Manual”, and with no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

About This Guide 1

About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the Ada language standard.

GNAT implements Ada 95 and Ada 2005, and it may also be invoked in Ada 83 compat-
ibility mode. By default, GNAT assumes Ada 2005, but you can override with a compiler
switch to explicitly specify the language version. (Please refer to Section “Compiling Dif-
ferent Versions of Ada” in GNAT User’s Guide, for details on these switches.) Throughout
this manual, references to “Ada” without a year suffix apply to both the Ada 95 and Ada
2005 versions of the language.

Ada is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada is
designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

What This Reference Manual Contains

This reference manual contains the following chapters:

e Chapter 1 [Implementation Defined Pragmas|, page 5, lists GNAT implementation-
dependent pragmas, which can be used to extend and enhance the functionality of the
compiler.

e Chapter 2 [Implementation Defined Attributes|, page 67, lists GNAT implementation-
dependent attributes, which can be used to extend and enhance the functionality of
the compiler.

e Chapter 3 [Implementation Defined Restrictions], page 81, lists GNAT implementation-
dependent restrictions, which can be used to extend and enhance the functionality of
the compiler.

e Chapter 4 [Implementation Advice], page 93, provides information on generally desir-
able behavior which are not requirements that all compilers must follow since it cannot
be provided on all systems, or which may be undesirable on some systems.

e Chapter 5 [Implementation Defined Characteristics], page 119, provides a guide to
minimizing implementation dependent features.

e Chapter 6 [Intrinsic Subprograms|, page 143, describes the intrinsic subprograms im-
plemented by GNAT, and how they can be imported into user application programs.

e Chapter 7 [Representation Clauses and Pragmas|, page 145, describes in detail the way
that GNAT represents data, and in particular the exact set of representation clauses
and pragmas that is accepted.

e Chapter 8 [Standard Library Routines|, page 169, provides a listing of packages and a
brief description of the functionality that is provided by Ada’s extensive set of standard
library routines as implemented by GNAT.

2 GNAT Reference Manual

e Chapter 9 [The Implementation of Standard I/O], page 179, details how the GNAT
implementation of the input-output facilities.

e Chapter 10 [The GNAT Library], page 195, is a catalog of packages that complement
the Ada predefined library.

e Chapter 11 [Interfacing to Other Languages|, page 213, describes how programs written
in Ada using GNAT can be interfaced to other programming languages.

Chapter 12 [Specialized Needs Annexes|, page 215, describes the GNAT implementation
of all of the specialized needs annexes.

e Chapter 13 [Implementation of Specific Ada Features|, page 217, discusses issues re-
lated to GNAT’s implementation of machine code insertions, tasking, and several other
features.

e Chapter 14 [Implementation of Ada 2012 Features|, page 227, describes the status of
the GNAT implementation of the Ada 2012 language standard.

e Chapter 15 [Obsolescent Features|, page 243 documents implementation dependent
features, including pragmas and attributes, which are considered obsolescent, since
there are other preferred ways of achieving the same results. These obsolescent forms
are retained for backwards compatibility.

This reference manual assumes a basic familiarity with the Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995, January 1995. It does not re-
quire knowledge of the new features introduced by Ada 2005, (officially known as ISO/IEC
8652:1995 with Technical Corrigendum 1 and Amendment 1). Both reference manuals are
included in the GNAT documentation package.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
e Functions, utility program names, standard names, and classes.
e (Option flags
e ‘File names’, ‘button names’, and ‘field names’.
e Variables, environment variables, and metasyntactic variables.
e Emphasis.
e [optional information or parameters]
e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters ‘$
" (dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the ‘$’ replaced by whatever prompt
character you are using.

Related Information

See the following documents for further information on GNAT:

About This Guide 3

e See Section “About This Guide” in GNAT User’s Guide, which provides information
on how to use the GNAT compiler system.

e Ada 95 Reference Manual, which contains all reference material for the Ada 95 pro-
gramming language.

e Ada 95 Annotated Reference Manual, which is an annotated version of the Ada 95
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 compatibility.

e Ada 2005 Reference Manual, which contains all reference material for the Ada 2005
programming language.

e Ada 2005 Annotated Reference Manual, which is an annotated version of the Ada 2005
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 and Ada 95 compatibility.

e DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

e DEC Ada, Language Reference Manual, part number AA-PYZAB-TK which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 1: Implementation Defined Pragmas 5)

1 Implementation Defined Pragmas

Ada defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada Reference Manual.

In addition, Ada allows implementations to define additional pragmas whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
pragmas, which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas might not be portable to other compilers
(although GNAT implements this set of pragmas on all platforms). Therefore if portabil-
ity to other compilers is an important consideration, the use of these pragmas should be
minimized.

Pragma Abort_Defer

Syntax:
pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence of
statements (but not for the declarations or handlers, if any, associated with this statement
sequence).

Pragma Ada_83

Syntax:
pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies,
regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and
Ada 2005 are not recognized, optional package bodies are allowed, and generics may name
types with unknown discriminants without using the (<>) notation. In addition, some but
not all of the additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be
compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards
compatible with Ada 83. However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since
GNAT does not enforce all the additional checks required by Ada 83.

Pragma Ada_95

Syntax:

pragma Ada_95;
A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these

6 GNAT Reference Manual

contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Pragma Ada_05

Syntax:

pragma Ada_05;
A configuration pragma that establishes Ada 2005 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This pragma is useful when
writing a reusable component that itself uses Ada 2005 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.

Pragma Ada_2005

Syntax:
pragma Ada_2005;

This configuration pragma is a synonym for pragma Ada_05 and has the same syntax and
effect.

Pragma Ada_12

Syntax:

pragma Ada_12;
A configuration pragma that establishes Ada 2012 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically for
the Ada and System packages and their children, so you need not specify it in these contexts.

This pragma is useful when writing a reusable component that itself uses Ada 2012 features,
but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs.

Pragma Ada_2012

Syntax:
pragma Ada_2012;

This configuration pragma is a synonym for pragma Ada_12 and has the same syntax and
effect.

Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER [,IDENTIFIER {, ARG}]);

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of annotation.
GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional
identifier is also left unanalyzed, and by convention is used to control the action of the tool
to which the annotation is addressed. The remaining arg arguments can be either string
literals or more generally expressions. String literals are assumed to be either of type
Standard.String or else Wide_String or Wide_Wide_String depending on the character

Chapter 1: Implementation Defined Pragmas 7

literals they contain. All other kinds of arguments are analyzed as expressions, and must
be unambiguous.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler, except to generate corresponding note lines in the generated ALI file.
For the format of these note lines, see the compiler source file lib-writ.ads. This pragma
is intended for use by external tools, including ASIS. The use of pragma Annotate does
not affect the compilation process in any way. This pragma may be used as a configuration
pragma.

Pragma Assert

Syntax:

pragma Assert (
boolean_EXPRESSION
[, string_EXPRESSION]);

The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:
if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION);
end if;
end if;
The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message is
‘file:nnn’, where file is the name of the source file containing the assert, and nnn is the
line number of the assert. A pragma is not a statement, so if a statement sequence contains
nothing but a pragma assert, then a null statement is required in addition, as in:

if.J > 3 then
pragma Assert (K > 3, "Bad value for K");
null;
end if;
Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

If assertions are disabled (switch ‘-gnata’ not used), then there is no run-time effect
(and in particular, any side effects from the expression will not occur at run time). (The
expression is still analyzed at compile time, and may cause types to be frozen if they are
mentioned here for the first time).

If assertions are enabled, then the given expression is tested, and if it is False then
System.Assertions.Raise_Assert_Failure is called which results in the raising of
Assert_Failure with the given message.

You should generally avoid side effects in the expression arguments of this pragma, be-
cause these side effects will turn on and off with the setting of the assertions mode, resulting
in assertions that have an effect on the program. However, the expressions are analyzed for
semantic correctness whether or not assertions are enabled, so turning assertions on and off
cannot affect the legality of a program.

8 GNAT Reference Manual

Note that the implementation defined policy DISABLE, given in a pragma
Assertion_Policy, can be used to suppress this semantic analysis.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

Pragma Assertion_Policy

Syntax:
pragma Assertion_Policy (CHECK | DISABLE | IGNORE);

If the argument is CHECK, then pragma Assert is enabled. If the argument is IGNORE, then
pragma Assert is ignored. This pragma overrides the effect of the ‘~gnata’ switch on the
command line.

The implementation defined policy DISABLE is like IGNORE except that it completely
disables semantic checking of the argument to pragma Assert. This may be useful when
the pragma argument references subprograms in a with’ed package which is replaced by a
dummy package for the final build.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

Pragma Assume_No_Invalid_Values

Syntax:
pragma Assume_No_Invalid_Values (On | Off);

This is a configuration pragma that controls the assumptions made by the compiler about
the occurrence of invalid representations (invalid values) in the code.

The default behavior (corresponding to an Off argument for this pragma), is to assume
that values may in general be invalid unless the compiler can prove they are valid. Consider
the following example:

V1l : Integer range 1 .. 10;
V2 : Integer range 11 .. 20;

éé; J in V2 .. V1 loop

end.iéop;
if V1 and V2 have valid values, then the loop is known at compile time not to execute since
the lower bound must be greater than the upper bound. However in default mode, no such
assumption is made, and the loop may execute. If Assume_No_Invalid_Values (On) is

given, the compiler will assume that any occurrence of a variable other than in an explicit
’Valid test always has a valid value, and the loop above will be optimized away.

The use of Assume_No_Invalid_Values (On) is appropriate if you know your code is
free of uninitialized variables and other possible sources of invalid representations, and may
result in more efficient code. A program that accesses an invalid representation with this
pragma in effect is erroneous, so no guarantees can be made about its behavior.

It is peculiar though permissible to use this pragma in conjunction with validity checking
(-gnatVa). In such cases, accessing invalid values will generally give an exception, though

Chapter 1: Implementation Defined Pragmas 9

formally the program is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.

Pragma Ast_Entry

Syntax:
pragma AST_Entry (entry_IDENTIFIER);

This pragma is implemented only in the OpenVMS implementation of GNAT. The argu-
ment is the simple name of a single entry; at most one AST_Entry pragma is allowed for any
given entry. This pragma must be used in conjunction with the AST_Entry attribute, and
is only allowed after the entry declaration and in the same task type specification or single
task as the entry to which it applies. This pragma specifies that the given entry may be
used to handle an OpenVMS asynchronous system trap (AST) resulting from an OpenVMS
system service call. The pragma does not affect normal use of the entry. For further details
on this pragma, see the DEC Ada Language Reference Manual, section 9.12a.

Pragma C_Pass_By_Copy

Syntax:
pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);
Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

e The size of the record type does not exceed the value specified for Max_Size.
e The record type has Convention C.

e The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy, i.e. in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

Pragma Check

Syntax:
pragma Check (
[Name =>] Identifier,
[Check =>] Boolean_EXPRESSION
[, [Message =>] string_ EXPRESSION]);

This pragma is similar to the predefined pragma Assert except that an extra identifier
argument is present. In conjunction with pragma Check_Policy, this can be used to define
groups of assertions that can be independently controlled. The identifier Assertion is spe-
cial, it refers to the normal set of pragma Assert statements. The identifiers Precondition

10 GNAT Reference Manual

and Postcondition correspond to the pragmas of these names, so these three names would
normally not be used directly in a pragma Check.

Checks introduced by this pragma are normally deactivated by default. They can be
activated either by the command line option ‘-gnata’, which turns on all checks, or indi-
vidually controlled using pragma Check_Policy.

Pragma Check_Name

Syntax:
pragma Check_Name (check_name_IDENTIFIER);

This is a configuration pragma that defines a new implementation defined check name
(unless IDENTIFIER matches one of the predefined check names, in which case the pragma
has no effect). Check names are global to a partition, so if two or more configuration
pragmas are present in a partition mentioning the same name, only one new check name is
introduced.

An implementation defined check name introduced with this pragma may be used in
only three contexts: pragma Suppress, pragma Unsuppress, and as the prefix of a Check_
Name’Enabled attribute reference. For any of these three cases, the check name must be
visible. A check name is visible if it is in the configuration pragmas applying to the current
unit, or if it appears at the start of any unit that is part of the dependency set of the current
unit (e.g., units that are mentioned in with clauses).

Pragma Check_Policy

Syntax:

pragma Check_Policy
([Name =>] Identifier,
[Policy =>] POLICY_IDENTIFIER);

POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE

This pragma is similar to the predefined pragma Assertion_Policy, except that it con-
trols sets of named assertions introduced using the Check pragmas. It can be used as a
configuration pragma or (unlike Assertion_Policy) can be used within a declarative part,
in which case it controls the status to the end of the corresponding construct (in a manner
identical to pragma Suppress).

The identifier given as the first argument corresponds to a name used in associated Check
pragmas. For example, if the pragma:

pragma Check_Policy (Critical_Error, OFF);

is given, then subsequent Check pragmas whose first argument is also Critical_Error will
be disabled. The special identifier Assertion controls the behavior of normal Assert prag-
mas (thus a pragma Check_Policy with this identifier is similar to the normal Assertion_
Policy pragma except that it can appear within a declarative part).

The special identifiers Precondition and Postcondition control the status of precondi-
tions and postconditions. If a Precondition pragma is encountered, it is ignored if turned
off by a Check_Policy specifying that Precondition checks are 0ff or Ignored. Similarly
use of the name Postcondition controls whether Postcondition pragmas are recognized.

Chapter 1: Implementation Defined Pragmas 11

The check policy is OFF to turn off corresponding checks, and ON to turn on corresponding
checks. The default for a set of checks for which no Check_Policy is given is OFF unless
the compiler switch ‘-gnata’ is given, which turns on all checks by default.

The check policy settings CHECK and IGNORE are also recognized as synonyms for ON and
OFF. These synonyms are provided for compatibility with the standard Assertion_Policy
pragma.

The implementation defined policy DISABLE is like OFF except that it completely disables
semantic checking of the argument to the corresponding class of pragmas. This may be
useful when the pragma arguments reference subprograms in a with’ed package which is
replaced by a dummy package for the final build.

Pragma Comment

Syntax:
pragma Comment (static_string EXPRESSION);

This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the
pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

Pragma Common_Object

Syntax:

pragma Common_0Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION
This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object LOCAL_NAME is assigned to the area
designated by the External argument. You may define a record to correspond to a series of
fields. The Size argument is syntax checked in GNAT, but otherwise ignored.

Common_0Object is not supported on all platforms. If no support is available, then the

code generator will issue a message indicating that the necessary attribute for implementa-
tion of this pragma is not available.

Pragma Compile_Time_Error

Syntax:
pragma Compile_Time_Error
(boolean_EXPRESSION, static_string EXPRESSION) ;
This pragma can be used to generate additional compile time error messages. It is partic-
ularly useful in generics, where errors can be issued for specific problematic instantiations.
The first parameter is a boolean expression. The pragma is effective only if the value of this

12 GNAT Reference Manual

expression is known at compile time, and has the value True. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g., the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are met, an error
message is generated using the value given as the second argument. This string value may
contain embedded ASCIL.LF characters to break the message into multiple lines.

Pragma Compile_Time_Warning

Syntax:
pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string EXPRESSION) ;
Same as pragma Compile_Time_Error, except a warning is issued instead of an error mes-
sage. Note that if this pragma is used in a package that is with’ed by a client, the client
will get the warning even though it is issued by a with’ed package (normally warnings in
with’ed units are suppressed, but this is a special exception to that rule).

One typical use is within a generic where compile time known characteristics of formal
parameters are tested, and warnings given appropriately. Another use with a first param-
eter of True is to warn a client about use of a package, for example that it is not fully
implemented.

Pragma Compiler_Unit

Syntax:

pragma Compiler_Unit;
This pragma is intended only for internal use in the GNAT run-time library. It indicates
that the unit is used as part of the compiler build. The effect is to disallow constructs (raise
with message, conditional expressions etc) that would cause trouble when bootstrapping
using an older version of GNAT. For the exact list of restrictions, see the compiler sources
and references to Is_Compiler_Unit.

Pragma Complete_Representation

Syntax:

pragma Complete_Representation;
This pragma must appear immediately within a record representation clause. Typical place-
ments are before the first component clause or after the last component clause. The effect is
to give an error message if any component is missing a component clause. This pragma may
be used to ensure that a record representation clause is complete, and that this invariant is
maintained if fields are added to the record in the future.

Pragma Complex_Representation

Syntax:

pragma Complex_Representation
([Entity =>] LOCAL_NAME);

Chapter 1: Implementation Defined Pragmas 13

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gce to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

Pragma Component_Alignment

Syntax:

pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size
| Component_Size_4
| Storage_Unit
| Default
Specifies the alignment of components in array or record types. The meaning of the Form

argument is as follows:

Component_Size
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

Component_Size_4
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

Storage_Unit
Specifies that array or record components are byte aligned, i.e. aligned on
boundaries determined by the value of the constant System.Storage_Unit.

Default Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. For Open-
VMS VAX systems, the Default choice is the same as the Storage_Unit choice
(byte alignment). For all other systems, the Default choice is the same as
Component_Size (natural alignment).

If the Name parameter is present, type. LOCAL_NAME must refer to a local record or array
type, and the specified alignment choice applies to the specified type. The use of Component_
Alignment together with a pragma Pack causes the Component_Alignment pragma to be
ignored. The use of Component_Alignment together with a record representation clause is
only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for

14 GNAT Reference Manual

configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

Pragma Convention_Identifier

Syntax:

pragma Convention_Identifier (

[Name =>] IDENTIFIER,

[Convention =>] convention_IDENTIFIER);
This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention in
other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding
the need to modify the sources. As another example, you could use this to parameterize
convention requirements according to systems. Suppose you needed to use Stdcall on
windows systems, and C on some other system, then you could define a convention identifier
Library and use a single Convention_Identifier pragma to specify which convention
would be used system-wide.

Pragma CPP _Class

Syntax:
pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared as a record
type. It indicates that the type corresponds to an externally declared C++ class type, and
is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual
primitives then the record must be declared as a tagged record type.

Types for which CPP_Class is specified do not have assignment or equality operators
defined (such operations can be imported or declared as subprograms as required). Ini-
tialization is allowed only by constructor functions (see pragma CPP_Constructor). Such
types are implicitly limited if not explicitly declared as limited or derived from a limited
type, and an error is issued in that case.

Pragma CPP_Class is intended primarily for automatic generation using an automatic
binding generator tool. See Section 11.2 [Interfacing to C++|, page 214 for related informa-
tion.

Note: Pragma CPP_Class is currently obsolete. It is supported for backward compati-
bility but its functionality is available using pragma Import with Convention = CPP.

Chapter 1: Implementation Defined Pragmas 15

Pragma CPP_Constructor
Syntax:

pragma CPP_Constructor ([Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION 1) ;

This pragma identifies an imported function (imported in the usual way with pragma
Import) as corresponding to a C++ constructor. If External_Name and Link_Name are
not specified then the Entity argument is a name that must have been previously men-
tioned in a pragma Import with Convention = CPP. Such name must be of one of the
following forms:

e function Fname return T
e function Fname return T’Class
e function Fname (...) return T
e function Fname (...) return T’Class
where T is a limited record type imported from C++ with pragma Import and Convention
= CPP.

The first two forms import the default constructor, used when an object of type T is
created on the Ada side with no explicit constructor. The latter two forms cover all the
non-default constructors of the type. See the GNAT users guide for details.

If no constructors are imported, it is impossible to create any objects on the Ada side
and the type is implicitly declared abstract.

Pragma CPP_Constructor is intended primarily for automatic generation using an au-
tomatic binding generator tool. See Section 11.2 [Interfacing to C++|, page 214 for more
related information.

Note: The use of functions returning class-wide types for constructors is currently ob-
solete. They are supported for backward compatibility. The use of functions returning the
type T leave the Ada sources more clear because the imported C++ constructors always
return an object of type T; that is, they never return an object whose type is a descendant
of type T.

Pragma CPP_Virtual

This pragma is now obsolete has has no effect because GNAT generates the same object
layout than the G++ compiler.

See Section 11.2 [Interfacing to C++], page 214 for related information.

Pragma CPP_Vtable

This pragma is now obsolete has has no effect because GNAT generates the same object
layout than the G++ compiler.

See Section 11.2 [Interfacing to C++|, page 214 for related information.

16 GNAT Reference Manual

Pragma Debug

Syntax:
pragma Debug ([CONDITION,]PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART
The procedure call argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.

If debug pragmas are not enabled or if the condition is present and evaluates to False,
this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is
exactly equivalent to the procedure call statement corresponding to the argument with a
terminating semicolon. Pragmas are permitted in sequences of declarations, so you can use
pragma Debug to intersperse calls to debug procedures in the middle of declarations. Debug
pragmas can be enabled either by use of the command line switch ‘-gnata’ or by use of the
configuration pragma Debug_Policy.

Pragma Debug_Policy

Syntax:
pragma Debug_Policy (CHECK | DISABLE | IGNORE);

If the argument is CHECK, then pragma DEBUG is enabled. If the argument is IGNORE, then
pragma DEBUG is ignored. This pragma overrides the effect of the ‘-gnata’ switch on the
command line.

The implementation defined policy DISABLE is like IGNORE except that it completely
disables semantic checking of the argument to pragma Debug. This may be useful when
the pragma argument references subprograms in a with’ed package which is replaced by a
dummy package for the final build.

Pragma Detect_Blocking

Syntax:
pragma Detect_Blocking;

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program_FError if that happens.

Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma that provides control over the elaboration model used by
the compilation affected by the pragma. If the parameter is Dynamic, then the dynamic
elaboration model described in the Ada Reference Manual is used, as though the ‘-gnatE’
switch had been specified on the command line. If the parameter is Static, then the
default GNAT static model is used. This configuration pragma overrides the setting of the
command line. For full details on the elaboration models used by the GNAT compiler, see
Section “Elaboration Order Handling in GNAT” in GNAT User’s Guide.

Chapter 1: Implementation Defined Pragmas 17

Pragma Eliminate

Syntax:
pragma Eliminate ([Entity =>] DEFINING_DESIGNATOR,
[Source_Location =>] STRING_LITERAL);
The string literal given for the source location is a string which specifies the line number of
the occurrence of the entity, using the syntax for SOURCE_TRACE given below:
SOURCE_TRACE SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]

LBRACKET = [

RBRACKET =]

SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER
LINE_NUMBER = DIGIT {DIGIT}

Spaces around the colon in a Source_Reference are optional.

The DEFINING_DESIGNATOR matches the defining designator used in an explicit subpro-
gram declaration, where the entity name in this designator appears on the source line
specified by the source location.

The source trace that is given as the Source_Location shall obey the following rules.
The FILE_NAME is the short name (with no directory information) of an Ada source file,
given using exactly the required syntax for the underlying file system (e.g. case is important
if the underlying operating system is case sensitive). LINE_NUMBER gives the line number of
the occurrence of the entity as a decimal literal without an exponent or point. If an entity
is not declared in a generic instantiation (this includes generic subprogram instances), the
source trace includes only one source reference. If an entity is declared inside a generic
instantiation, its source trace (when parsing from left to right) starts with the source location
of the declaration of the entity in the generic unit and ends with the source location of the
instantiation (it is given in square brackets). This approach is recursively used in case of
nested instantiations: the rightmost (nested most deeply in square brackets) element of the
source trace is the location of the outermost instantiation, the next to left element is the
location of the next (first nested) instantiation in the code of the corresponding generic
unit, and so on, and the leftmost element (that is out of any square brackets) is the location
of the declaration of the entity to eliminate in a generic unit.

Note that the Source_Location argument specifies which of a set of similarly named
entities is being eliminated, dealing both with overloading, and also appearence of the same
entity name in different scopes.

This pragma indicates that the given entity is not used in the program to be compiled
and built. The effect of the pragma is to allow the compiler to eliminate the code or data
associated with the named entity. Any reference to an eliminated entity causes a compile-
time or link-time error.

The intention of pragma Eliminate is to allow a program to be compiled in a system-
independent manner, with unused entities eliminated, without needing to modify the source
text. Normally the required set of Eliminate pragmas is constructed automatically using
the gnatelim tool.

Any source file change that removes, splits, or adds lines may make the set of Eliminate
pragmas invalid because their Source_Location argument values may get out of date.

18 GNAT Reference Manual

Pragma Eliminate may be used where the referenced entity is a dispatching operation.
In this case all the subprograms to which the given operation can dispatch are considered
to be unused (are never called as a result of a direct or a dispatching call).

Pragma Export_Exception

Syntax:

pragma Export_Exception (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer EXPRESSION]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION
This pragma is implemented only in the OpenVMS implementation of GNAT. It causes the
specified exception to be propagated outside of the Ada program, so that it can be handled
by programs written in other OpenVMS languages. This pragma establishes an external
name for an Ada exception and makes the name available to the OpenVMS Linker as a
global symbol. For further details on this pragma, see the DEC Ada Language Reference
Manual, section 13.9a3.2.

Pragma Export_Function

Syntax:
pragma Export_Function (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name °’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=

Chapter 1: Implementation Defined Pragmas 19

Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in conjunction with a separate
pragma Export, which must precede the pragma Export_Function. GNAT does not require
a separate pragma Export, but if none is present, Convention Ada is assumed, which is
usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

internal_name must uniquely designate the function to which the pragma applies. If
more than one function name exists of this name in the declarative part you must use
the Parameter_Types and Result_Type parameters is mandatory to achieve the required
unique designation. subtype_marks in these parameters must exactly match the subtypes in
the corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

Passing by descriptor is supported only on the OpenVMS ports of GNAT. The de-
fault behavior for Export_Function is to accept either 64bit or 32bit descriptors unless
short_descriptor is specified, then only 32bit descriptors are accepted.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Object

Syntax:

pragma Export_0Object
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL : :=
IDENTIFIER
| static_string EXPRESSION
This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point
of view of portability), but it is not required. Size is syntax checked, but otherwise ignored

by GNAT.

Pragma Export_Procedure
Syntax:

20 GNAT Reference Manual

pragma Export_Procedure (

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a

This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Passing by descriptor is supported only on the OpenVMS ports of GNAT. The de-
fault behavior for Export_Procedure is to accept either 64bit or 32bit descriptors unless
short_descriptor is specified, then only 32bit descriptors are accepted.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Export_Value
Syntax:

pragma Export_Value (
[Value =>] static_integer_EXPRESSION,
[Link_Name =>] static_string_EXPRESSION);

Chapter 1: Implementation Defined Pragmas 21

This pragma serves to export a static integer value for external use. The first argument
specifies the value to be exported. The Link_Name argument specifies the symbolic name to
be associated with the integer value. This pragma is useful for defining a named static value
in Ada that can be referenced in assembly language units to be linked with the application.
This pragma is currently supported only for the AAMP target and is ignored for other
targets.

Pragma Export_Valued_Procedure

Syntax:
pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISMI);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name °’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a

This pragma is identical to Export_Procedure except that the first parameter of LO-
CAL_NAME, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. GNAT provides
for this capability to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). GNAT does not require a separate
pragma Export, but if none is present, Convention Ada is assumed, which is almost cer-
tainly not what is wanted since the whole point of this pragma is to interface with foreign
language functions, so it is usually appropriate to use this pragma in conjunction with a
Export or Convention pragma that specifies the desired foreign convention.

22 GNAT Reference Manual

Passing by descriptor is supported only on the OpenVMS ports of GNAT. The default
behavior for Export_Valued_Procedure is to accept either 64bit or 32bit descriptors unless
short_descriptor is specified, then only 32bit descriptors are accepted.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions
that are present in the Ada RM. However, other implementations, notably the DEC Ada
83 implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_xxx, e.g. Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal
way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System.xxx where xxx is an entity
in the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument
is the name of the package containing the extended definition (e.g. Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with
the compiler, for example Aux_DEC or you can construct your own extension unit following
the above definition. Note that such a package is a child of System and thus is considered
part of the implementation. To compile it you will have to use the appropriate switch
for compiling system units. See Section “About This Guide” in GNAT User’s Guide, for
details.

Pragma Extensions_Allowed
Syntax:
pragma Extensions_Allowed (On | 0ff);

This configuration pragma enables or disables the implementation extension mode (the use
of Off as a parameter cancels the effect of the ‘-gnatX’ command switch).

In extension mode, the latest version of the Ada language is implemented (currently
Ada 2012), and in addition a small number of GNAT specific extensions are recognized as
follows:

Chapter 1: Implementation Defined Pragmas 23

Constrained attribute for generic objects

The Constrained attribute is permitted for objects of generic types. The result
indicates if the corresponding actual is constrained.

Pragma External

Syntax:

pragma External (

L

[
[)
[’

Convention =>] convention_IDENTIFIER,
Entity =>] LOCAL_NAME

[External_Name =>] static_string_ EXPRESSION]
[Link_Name =>] static_string EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

Pragma External_Name_Casing

Syntax:

pragma External_Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);

This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:

Implicit external names

Implicit external names are derived from identifiers. The most common case
arises when a standard Ada Import or Export pragma is used with only two
arguments, as in:

pragma Import (C, C_Routine);

Since Ada is a case-insensitive language, the spelling of the identifier in the Ada
source program does not provide any information on the desired casing of the
external name, and so a convention is needed. In GNAT the default treatment
is that such names are converted to all lower case letters. This corresponds
to the normal C style in many environments. The first argument of pragma
External_Name_Casing can be used to control this treatment. If Uppercase is
specified, then the name will be forced to all uppercase letters. If Lowercase is
specified, then the normal default of all lower case letters will be used.

This same implicit treatment is also used in the case of extended DEC Ada 83
compatible Import and Export pragmas where an external name is explicitly
specified using an identifier rather than a string.

Explicit external names

Explicit external names are given as string literals. The most common case
arises when a standard Ada Import or Export pragma is used with three argu-
ments, as in:

pragma Import (C, C_Routine, "C_routine");

24 GNAT Reference Manual

In this case, the string literal normally provides the exact casing required for
the external name. The second argument of pragma External_Name_Casing
may be used to modify this behavior. If Uppercase is specified, then the name
will be forced to all uppercase letters. If Lowercase is specified, then the name
will be forced to all lowercase letters. A specification of As_Is provides the
normal default behavior in which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the ‘gnat.adc’ file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies
to the current unit, or it can be used more locally to control individual Import/Export
pragmas.

It is primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g. the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

Pragma Fast_Math
Syntax:

pragma Fast_Math;

This is a configuration pragma which activates a mode in which speed is considered more
important for floating-point operations than absolutely accurate adherence to the require-
ments of the standard. Currently the following operations are affected:

Complex Multiplication
The normal simple formula for complex multiplication can result in intermediate
overflows for numbers near the end of the range. The Ada standard requires
that this situation be detected and corrected by scaling, but in Fast_Math mode
such cases will simply result in overflow. Note that to take advantage of this you
must instantiate your own version of Ada.Numerics.Generic_Complex_Types
under control of the pragma, rather than use the preinstantiated versions.

Pragma Favor_Top_Level
Syntax:

pragma Favor_Top_Level (type_NAME);

The named type must be an access-to-subprogram type. This pragma is an efficiency hint
to the compiler, regarding the use of "Access or "Unrestricted_Access on nested (non-library-
level) subprograms. The pragma means that nested subprograms are not used with this
type, or are rare, so that the generated code should be efficient in the top-level case. When
this pragma is used, dynamically generated trampolines may be used on some targets for
nested subprograms. See also the No_Implicit_Dynamic_Code restriction.

Chapter 1: Implementation Defined Pragmas 25

Pragma Finalize_Storage_Only

Syntax:
pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME) ;

This pragma allows the compiler not to emit a Finalize call for objects defined at the library
level. This is mostly useful for types where finalization is only used to deal with storage
reclamation since in most environments it is not necessary to reclaim memory just before
terminating execution, hence the name.

Pragma Float_Representation

Syntax:
pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]);

FLOAT_REP ::= VAX_Float | IEEE_Float

In the one argument form, this pragma is a configuration pragma which allows control over
the internal representation chosen for the predefined floating point types declared in the
packages Standard and System. On all systems other than OpenVMS, the argument must
be IEEE_Float and the pragma has no effect. On OpenVMS, the argument may be VAX_
Float to specify the use of the VAX float format for the floating-point types in Standard.
This requires that the standard runtime libraries be recompiled.

The two argument form specifies the representation to be used for the specified floating-
point type. On all systems other than OpenVMS, the argument must be IEEE_Float and
the pragma has no effect. On OpenVMS, the argument may be VAX_Float to specify the
use of the VAX float format, as follows:

For digits values up to 6, F float format will be used.

For digits values from 7 to 9, D float format will be used.

For digits values from 10 to 15, G float format will be used.

Digits values above 15 are not allowed.

Pragma Ident

Syntax:
pragma Ident (static_string EXPRESSION);

This pragma provides a string identification in the generated object file, if the system
supports the concept of this kind of identification string. This pragma is allowed only in
the outermost declarative part or declarative items of a compilation unit. If more than one
Ident pragma is given, only the last one processed is effective. On OpenVMS systems,
the effect of the pragma is identical to the effect of the DEC Ada 83 pragma of the same
name. Note that in DEC Ada 83, the maximum allowed length is 31 characters, so if it is
important to maintain compatibility with this compiler, you should obey this length limit.

Pragma Implemented

Syntax:
pragma Implemented (procedure_LOCAL_NAME, implementation_kind);

implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any

26 GNAT Reference Manual

This is an Ada 2012 representation pragma which applies to protected, task and synchro-
nized interface primitives. The use of pragma Implemented provides a way to impose a static
requirement on the overriding operation by adhering to one of the three implementation
kids: entry, protected procedure or any of the above.

type Synch_Iface is synchronized interface;
procedure Prim_Op (0Obj : in out Iface) is abstract;
pragma Implemented (Prim_Op, By_Protected_Procedure);

protected type Prot_1 is new Synch_Iface with
procedure Prim_Op; -- Legal
end Prot_1;

protected type Prot_2 is new Synch_Iface with
entry Prim_Op; -- Illegal
end Prot_2;

task type Task_Typ is new Synch_Iface with
entry Prim_Op; -- Illegal

end Task_Typ;
When applied to the procedure_or_entry_NAME of a requeue statement, pragma Imple-
mented determines the runtime behavior of the requeue. Implementation kind By_Entry
guarantees that the action of requeueing will proceed from an entry to another entry. Im-
plementation kind By_Protected_Procedure transforms the requeue into a dispatching call,
thus eliminating the chance of blocking. Kind By_Any shares the behavior of By_Entry and
By_Protected_Procedure depending on the target’s overriding subprogram kind.

Pragma Implicit_Packing

Syntax:
pragma Implicit_Packing;

This is a configuration pragma that requests implicit packing for packed arrays for which
a size clause is given but no explicit pragma Pack or specification of Component_Size is
present. It also applies to records where no record representation clause is present. Consider
this example:

type R is array (0O .. 7) of Boolean;

for R’Size use 8;
In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause does not
change the layout of a composite object. So the Size clause in the above example is normally
rejected, since the default layout of the array uses 8-bit components, and thus the array
requires a minimum of 64 bits.

If this declaration is compiled in a region of code covered by an occurrence of the con-
figuration pragma Implicit_Packing, then the Size clause in this and similar examples will
cause implicit packing and thus be accepted. For this implicit packing to occur, the type
in question must be an array of small components whose size is known at compile time,
and the Size clause must specify the exact size that corresponds to the length of the array
multiplied by the size in bits of the component type.

Similarly, the following example shows the use in the record case

type r is record
a, b, c, d, e, £f, g, h : boolean;

Chapter 1: Implementation Defined Pragmas 27

chr : character;
end record;
for r’size use 16;

Without a pragma Pack, each Boolean field requires 8 bits, so the minimum size is 72 bits,
but with a pragma Pack, 16 bits would be sufficient. The use of pragma Implicit_Packing

allows this record declaration to compile without an explicit pragma Pack.

Pragma Import_Exception

Syntax:

pragma Import_Exception (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Form =>] Ada | VMS]
[, [Code =>] static_integer_EXPRESSION]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
OpenVMS conditions (for example, from OpenVMS system services or other OpenVMS lan-
guages) to be propagated to Ada programs as Ada exceptions. The pragma specifies that
the exception associated with an exception declaration in an Ada program be defined ex-
ternally (in non-Ada code). For further details on this pragma, see the DEC Ada Language
Reference Manual, section 13.9a.3.1.

Pragma Import_Function

Syntax:
pragma Import_Function (
[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]

[, [Mechanism =>] MECHANISM]

[, [Result_Mechanism =>] MECHANISM_NAME]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name °’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

28 GNAT Reference Manual

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is used in conjunction with a pragma Import to specify additional information
for an imported function. The pragma Import (or equivalent pragma Interface) must
precede the Import_Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma ap-
plies. If more than one function name exists of this name in the declarative part you must
use the Parameter_Types and Result_Type parameters to achieve the required unique des-
ignation. Subtype marks in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ’Access attribute can be used to match an anonymous
access parameter.

You may optionally use the Mechanism and Result_Mechanism parameters to specify
passing mechanisms for the parameters and result. If you specify a single mechanism name,
it applies to all parameters. Otherwise you may specify a mechanism on a parameter by
parameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

Passing by descriptor is supported only on the OpenVMS ports of GNAT. The de-
fault behavior for Import_Function is to pass a 64bit descriptor unless short_descriptor is
specified, then a 32bit descriptor is passed.

First_Optional_Parameter applies only to OpenVMS ports of GNAT. It specifies that
the designated parameter and all following parameters are optional, meaning that they are
not passed at the generated code level (this is distinct from the notion of optional parameters
in Ada where the parameters are passed anyway with the designated optional parameters).
All optional parameters must be of mode IN and have default parameter values that are
either known at compile time expressions, or uses of the *Null_Parameter attribute.

Pragma Import_Object

Syntax:
pragma Import_0Object
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION
This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied

Chapter 1: Implementation Defined Pragmas 29

to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

Pragma Import_Procedure

Syntax:
pragma Import_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name °’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uwba | s | sb | a | nca

This pragma is identical to Import_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.

Pragma Import_Valued_Procedure

Syntax:
pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]
[, [First_Optional_Parameter =>] IDENTIFIER]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

30 GNAT Reference Manual

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name °’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference
| Descriptor [([Class =>] CLASS_NAME)]
| Short_Descriptor [([Class =>] CLASS_NAME)]

CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca

This pragma is identical to Import_Procedure except that the first parameter of LO-
CAL_NAME, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. The purpose
of this capability is to allow the use of OUT and IN OUT parameters in interfacing to ex-
ternal functions (which are not permitted in Ada functions). You may optionally use the
Mechanism parameters to specify passing mechanisms for the parameters. If you specify a
single mechanism name, it applies to all parameters. Otherwise you may specify a mecha-
nism on a parameter by parameter basis using either positional or named notation. If the
mechanism is not specified, the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma
Import that specifies the desired convention, since otherwise the default convention is Ada,
which is almost certainly not what is required.

Pragma Initialize_Scalars

Syntax:

pragma Initialize_Scalars;

This pragma is similar to Normalize_Scalars conceptually but has two important differ-
ences. First, there is no requirement for the pragma to be used uniformly in all units of a
partition, in particular, it is fine to use this just for some or all of the application units of
a partition, without needing to recompile the run-time library.

In the case where some units are compiled with the pragma, and some without, then
a declaration of a variable where the type is defined in package Standard or is locally
declared will always be subject to initialization, as will any declaration of a scalar variable.
For composite variables, whether the variable is initialized may also depend on whether the
package in which the type of the variable is declared is compiled with the pragma.

The other important difference is that you can control the value used for initializing
scalar objects. At bind time, you can select several options for initialization. You can

Chapter 1: Implementation Defined Pragmas 31

initialize with invalid values (similar to Normalize_Scalars, though for Initialize_Scalars it is
not always possible to determine the invalid values in complex cases like signed component
fields with non-standard sizes). You can also initialize with high or low values, or with a
specified bit pattern. See the users guide for binder options for specifying these cases.

This means that you can compile a program, and then without having to recompile the
program, you can run it with different values being used for initializing otherwise uninitial-
ized values, to test if your program behavior depends on the choice. Of course the behavior
should not change, and if it does, then most likely you have an erroneous reference to an
uninitialized value.

It is even possible to change the value at execution time eliminating even the need to

rebind with a different switch using an environment variable. See the GNAT users guide
for details.

Note that pragma Initialize_Scalars is particularly useful in conjunction with the
enhanced validity checking that is now provided in GNAT, which checks for invalid values
under more conditions. Using this feature (see description of the ‘-gnatV’ flag in the users
guide) in conjunction with pragma Initialize_Scalars provides a powerful new tool to
assist in the detection of problems caused by uninitialized variables.

Note: the use of Initialize_Scalars has a fairly extensive effect on the generated
code. This may cause your code to be substantially larger. It may also cause an increase in
the amount of stack required, so it is probably a good idea to turn on stack checking (see
description of stack checking in the GNAT users guide) when using this pragma.

Pragma Inline_Always
Syntax:
pragma Inline_Always (NAME [, NAME]);

Similar to pragma Inline except that inlining is not subject to the use of option ‘-~gnatn’
and the inlining happens regardless of whether this option is used.

Pragma Inline_Generic

Syntax:

pragma Inline_Generic (generic_package_NAME);

This is implemented for compatibility with DEC Ada 83 and is recognized, but otherwise
ignored, by GNAT. All generic instantiations are inlined by default when using GNAT.

Pragma Interface

Syntax:
pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_NAME
[, [External_Name =>] static_string_expression]
[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some

32 GNAT Reference Manual

extended implementations of this pragma in certain Ada 83 implementations. The only
difference between pragma Interface and pragma Import is that there is special circuitry
to allow both pragmas to appear for the same subprogram entity (normally it is illegal to
have multiple Import pragmas. This is useful in maintaining Ada 83/Ada 95 compatibility
and is compatible with other Ada 83 compilers.

Pragma Interface_Name

Syntax:
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]
[, [Link_Name =>] static_string_ EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External_Name or Link_Name.

Pragma Interrupt_Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME);

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual. On the AAMP target the pragma can also be
specified for nonprotected parameterless procedures that are declared at the library level
(which includes procedures declared at the top level of a library package). In the case of
AAMP, when this pragma is applied to a nonprotected procedure, the instruction IERET
is generated for returns from the procedure, enabling maskable interrupts, in place of the
normal return instruction.

Pragma Interrupt_State

Syntax:
pragma Interrupt_State
([Name =>] value,
[State =>] SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl1-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are often
mapped to specific Ada exceptions, or used to implement run-time functions such as the
abort statement and stack overflow checking.

Pragma Interrupt_State provides a general mechanism for overriding such uses of in-
terrupts. It subsumes the functionality of pragma Unreserve_All_Interrupts. Pragma
Interrupt_State is not available on Windows or VMS. On all other platforms than Vx-
Works, it applies to signals; on VxWorks, it applies to vectored hardware interrupts and
may be used to mark interrupts required by the board support package as reserved.

Interrupts can be in one of three states:

Chapter 1: Implementation Defined Pragmas 33

e System

The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised.

e Runtime

The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

e User

The interrupt is unreserved. The user may install a handler to provide some other
action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt_ID. Typically, it is a name
declared in Ada.Interrupts.Names.

This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.

The effect is to move the interrupt to the specified state.

By declaring interrupts to be SYSTEM, you guarantee the standard system action, such
as a core dump.

By declaring interrupts to be USER, you guarantee that you can install a handler.

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the spec of package System.0S_Interface.

Overriding the default state of signals used by the Ada runtime may interfere with an
application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

Pragma Invariant

Syntax:
pragma Invariant
([Entity =>] private_type_LOCAL_NAME,

[Check =>] EXPRESSION

[, [Message =>] String_Expression]);
This pragma provides exactly the same capabilities as the Invariant aspect defined in AI05-
0146-1, and in the Ada 2012 Reference Manual. The Invariant aspect is fully implemented
in Ada 2012 mode, but since it requires the use of the aspect syntax, which is not available
exception in 2012 mode, it is not possible to use the Invariant aspect in earlier versions of
Ada. However the Invariant pragma may be used in any version of Ada.

The pragma must appear within the visible part of the package specification, after the
type to which its Entity argument appears. As with the Invariant aspect, the Check ex-
pression is not analyzed until the end of the visible part of the package, so it may contain
forward references. The Message argument, if present, provides the exception message used
if the invariant is violated. If no Message parameter is provided, a default message that
identifies the line on which the pragma appears is used.

34 GNAT Reference Manual

It is permissible to have multiple Invariants for the same type entity, in which case they
are and’ed together. It is permissible to use this pragma in Ada 2012 mode, but you cannot
have both an invariant aspect and an invariant pragma for the same entity.

For further details on the use of this pragma, see the Ada 2012 documentation of the
Invariant aspect.

Pragma Keep_Names

Syntax:
pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME);

The LOCAL_NAME argument must refer to an enumeration first subtype in the current
declarative part. The effect is to retain the enumeration literal names for use by Image and
Value even if a global Discard_Names pragma applies. This is useful when you want to
generally suppress enumeration literal names and for example you therefore use a Discard_
Names pragma in the ‘gnat.adc’ file, but you want to retain the names for specific enumer-
ation types.

Pragma License

Syntax:

pragma License (Unrestricted | GPL | Modified_GPL | Restricted);
This pragma is provided to allow automated checking for appropriate license conditions with
respect to the standard and modified GPL. A pragma License, which is a configuration
pragma that typically appears at the start of a source file or in a separate ‘gnat.adc’ file,
specifies the licensing conditions of a unit as follows:

e Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

e GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be with’ed by a restricted unit.

e Modified_GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.

e Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The following com-
ment text is searched for the appearance of any of the following strings.
If the string “GNU General Public License” is found, then the unit is assumed to have

GPL license, unless the string “As a special exception” follows, in which case the license
is assumed to be modified GPL.

Chapter 1: Implementation Defined Pragmas 35

If one of the strings “This specification is adapted from the Ada Semantic Interface” or
“This specification is derived from the Ada Reference Manual” is found then the unit
is assumed to be unrestricted.

These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately with’ed. For example, the program:

with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

end Secret_Stuff

if compiled with pragma License (Restricted) in a ‘gnat.adc’ file will generate the warn-
ing:
1. with Sem_Ch3;
I

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;

3. procedure Secret_Stuff is
Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

Pragma Link_With

Syntax:

pragma Link With (static_string EXPRESSION {,static_string_ EXPRESSION});
This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker_Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

pragma Link_With ("-labc -ldef");
results in passing the strings -labc and -1def as two separate arguments to the linker. In
addition pragma Link_With allows multiple arguments, with the same effect as successive
pragmas.

Pragma Linker_Alias

Syntax:
pragma Linker_Alias (

[Entity =>] LOCAL_NAME,

[Target =>] static_string_ EXPRESSION);
LOCAL_NAME must refer to an object that is declared at the library level. This pragma
establishes the given entity as a linker alias for the given target. It is equivalent to __
attribute__((alias)) in GNU C and causes LOCAL_NAME to be emitted as an alias
for the symbol static_string. EXPRESSION in the object file, that is to say no space is
reserved for LOCAL_NAME by the assembler and it will be resolved to the same address
as static_string_ EXPRESSION by the linker.

The actual linker name for the target must be used (e.g. the fully encoded name with

qualification in Ada, or the mangled name in C++), or it must be declared using the C
convention with pragma Import or pragma Export.

36 GNAT Reference Manual

Not all target machines support this pragma. On some of them it is accepted only if
pragma Weak_External has been applied to LOCAL_NAME.

-- Example of the use of pragma Linker_Alias

package p is
i : Integer := 1;
pragma Export (C, i);

new_name_for_i : Integer;
pragma Linker_Alias (new_name_for_i, "i");
end p;

Pragma Linker_Constructor

Syntax:
pragma Linker_Constructor (procedure_LOCAL_NAME);

procedure_.LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as an initialization
routine by the linker. It is equivalent to __attribute__((constructor)) in GNU C and
causes procedure_LOCAL_NAME to be invoked before the entry point of the executable
is called (or immediately after the shared library is loaded if the procedure is linked in a
shared library), in particular before the Ada run-time environment is set up.

Because of these specific contexts, the set of operations such a procedure can perform
is very limited and the type of objects it can manipulate is essentially restricted to the
elementary types. In particular, it must only contain code to which pragma Restrictions
(No_Elaboration_Code) applies.

This pragma is used by GNAT to implement auto-initialization of shared Stand Alone
Libraries, which provides a related capability without the restrictions listed above. Where
possible, the use of Stand Alone Libraries is preferable to the use of this pragma.

Pragma Linker_Destructor

Syntax:
pragma Linker_Destructor (procedure_LOCAL_NAME);

procedure_.LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as a finalization
routine by the linker. It is equivalent to __attribute__((destructor)) in GNU C and
causes procedure_ LOCAL_NAME to be invoked after the entry point of the executable has
exited (or immediately before the shared library is unloaded if the procedure is linked in a
shared library), in particular after the Ada run-time environment is shut down.

See pragma Linker_Constructor for the set of restrictions that apply because of these
specific contexts.

Pragma Linker_Section

Syntax:
pragma Linker_Section (
[Entity =>] LOCAL_NAME,
[Section =>] static_string EXPRESSION) ;

Chapter 1: Implementation Defined Pragmas 37

LOCAL_NAME must refer to an object that is declared at the library level. This
pragma specifies the name of the linker section for the given entity. It is equivalent to
__attribute__((section)) in GNU C and causes LOCAL_NAME to be placed in the
static_string. EXPRESSION section of the executable (assuming the linker doesn’t rename
the section).

The compiler normally places library-level objects in standard sections depending on
their type: procedures and functions generally go in the .text section, initialized variables
in the .data section and uninitialized variables in the .bss section.

Other, special sections may exist on given target machines to map special hardware, for
example I/O ports or flash memory. This pragma is a means to defer the final layout of the
executable to the linker, thus fully working at the symbolic level with the compiler.

Some file formats do not support arbitrary sections so not all target machines support
this pragma. The use of this pragma may cause a program execution to be erroneous if it
is used to place an entity into an inappropriate section (e.g. a modified variable into the
.text section). See also pragma Persistent_BSS.

-- Example of the use of pragma Linker_Section

package I0_Card is
Port_A : Integer;
pragma Volatile (Port_A);
pragma Linker_Section (Port_A, ".bss.port_a");

Port_B : Integer;

pragma Volatile (Port_B);

pragma Linker_Section (Port_B, ".bss.port_b");
end I0_Card;

Pragma Long_Float

Syntax:
pragma Long_Float (FLOAT_FORMAT);

FLOAT_FORMAT ::= D_Float | G_Float

This pragma is implemented only in the OpenVMS implementation of GNAT. It allows
control over the internal representation chosen for the predefined type Long_Float and
for floating point type representations with digits specified in the range 7 through 15.
For further details on this pragma, see the DEC Ada Language Reference Manual, section
3.5.7b. Note that to use this pragma, the standard runtime libraries must be recompiled.

Pragma Machine_Attribute

Syntax:
pragma Machine_Attribute (
[Entity =>] LOCAL_NAME,
[Attribute_Name =>] static_string EXPRESSION
[, [Info =>] static_EXPRESSION]);

Machine-dependent attributes can be specified for types and/or declarations. This pragma is
semantically equivalent to __attribute__((attribute_name)) (if info is not specified) or
__attribute__((attribute_name (info))) in GNU C, where attribute_name is recog-
nized by the compiler middle-end or the TARGET_ATTRIBUTE_TABLE machine specific macro.

38 GNAT Reference Manual

A string literal for the optional parameter info is transformed into an identifier, which may
make this pragma unusable for some attributes. See Section “Defining target-specific uses
of __attribute__" in GNU Compiler Collection (GCC) Internals, further information.

Pragma Main

Syntax:

pragma Main
(MAIN_OPTION [, MAIN_OPTION]);

MAIN_OPTION ::=

[Stack_Size =>] static_integer_ EXPRESSION
| [Task_Stack_Size_Default =>] static_integer_ EXPRESSION
| [Time_Slicing_Enabled =>] static_boolean_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

Pragma Main_Storage

Syntax:

pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION
This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect in
GNAT, other than being syntax checked. Note that the pragma also has no effect in DEC
Ada 83 for OpenVMS Alpha Systems.

Pragma No_Body

Syntax:

pragma No_Body;
There are a number of cases in which a package spec does not require a body, and in fact
a body is not permitted. GNAT will not permit the spec to be compiled if there is a body
around. The pragma No_Body allows you to provide a body file, even in a case where no
body is allowed. The body file must contain only comments and a single No_Body pragma.
This is recognized by the compiler as indicating that no body is logically present.

This is particularly useful during maintenance when a package is modified in such a way
that a body needed before is no longer needed. The provision of a dummy body with a
No_Body pragma ensures that there is no interference from earlier versions of the package
body.

Pragma No_Return
Syntax:
pragma No_Return (procedure_LOCAL_NAME {, procedure_LOCAL_NAME});

Each procedure_LOCAL_NAME argument must refer to one or more procedure declarations
in the current declarative part. A procedure to which this pragma is applied may not contain

Chapter 1: Implementation Defined Pragmas 39

any explicit return statements. In addition, if the procedure contains any implicit returns
from falling off the end of a statement sequence, then execution of that implicit return will
cause Program_Error to be raised.

One use of this pragma is to identify procedures whose only purpose is to raise an
exception. Another use of this pragma is to suppress incorrect warnings about missing
returns in functions, where the last statement of a function statement sequence is a call to
such a procedure.

Note that in Ada 2005 mode, this pragma is part of the language, and is identical in
effect to the pragma as implemented in Ada 95 mode.

Pragma No_Strict_Aliasing

Syntax:
pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];

type_.LOCAL_NAME must refer to an access type declaration in the current declarative
part. The effect is to inhibit strict aliasing optimization for the given type. The form with
no arguments is a configuration pragma which applies to all access types declared in units
to which the pragma applies. For a detailed description of the strict aliasing optimization,
and the situations in which it must be suppressed, see Section “Optimization and Strict
Aliasing” in GNAT User’s Guide.

This pragma currently has no effects on access to unconstrained array types.

Pragma Normalize_Scalars

Syntax:

pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

Standard.Character
Objects whose root type is Standard.Character are initialized to Character’Last
unless the subtype range excludes NUL (in which case NUL is used). This choice
will always generate an invalid value if one exists.

Standard.Wide_Character
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if one exists.

Standard.Wide_Wide_Character
Objects whose root type is Standard.Wide_Wide_Character are initialized to
the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL
(in which case NUL is used). This choice will always generate an invalid value
if one exists.

Integer types
Objects of an integer type are treated differently depending on whether negative
values are present in the subtype. If no negative values are present, then all one

40 GNAT Reference Manual

bits is used as the initial value except in the special case where zero is excluded
from the subtype, in which case all zero bits are used. This choice will always
generate an invalid value if one exists.

For subtypes with negative values present, the largest negative number is used,
except in the unusual case where this largest negative number is in the subtype,
and the largest positive number is not, in which case the largest positive value
is used. This choice will always generate an invalid value if one exists.

Floating-Point Types
Objects of all floating-point types are initialized to all 1-bits. For standard
IEEE format, this corresponds to a NaN (not a number) which is indeed an
invalid value.

Fixed-Point Types
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent the
fixed-point value.

Modular types
Objects of a modular type are initialized to all one bits, except in the special
case where zero is excluded from the subtype, in which case all zero bits are
used. This choice will always generate an invalid value if one exists.

Enumeration types
Objects of an enumeration type are initialized to all one-bits, i.e. to the value
2 ** typ’Size - 1 unless the subtype excludes the literal whose Pos value is
zero, in which case a code of zero is used. This choice will always generate an
invalid value if one exists.

Pragma Obsolescent

Syntax:
pragma Obsolescent;

pragma Obsolescent (
[Message =>] static_string_EXPRESSION
[, [Version =>] Ada_0511);

pragma Obsolescent (
[Entity =>] NAME

[, [Message =>] static_string_EXPRESSION

[, [Version =>] Ada_051]);
This pragma can occur immediately following a declaration of an entity, including the case
of a record component. If no Entity argument is present, then this declaration is the one
to which the pragma applies. If an Entity parameter is present, it must either match the
name of the entity in this declaration, or alternatively, the pragma can immediately follow
an enumeration type declaration, where the Entity argument names one of the enumeration
literals.

This pragma is used to indicate that the named entity is considered obsolescent and
should not be used. Typically this is used when an API must be modified by eventually

Chapter 1: Implementation Defined Pragmas 41

removing or modifying existing subprograms or other entities. The pragma can be used at
an intermediate stage when the entity is still present, but will be removed later.

The effect of this pragma is to output a warning message on a reference to an entity
thus marked that the subprogram is obsolescent if the appropriate warning option in the
compiler is activated. If the Message parameter is present, then a second warning message
is given containing this text. In addition, a reference to the entity is considered to be a
violation of pragma Restrictions (No_Obsolescent_Features).

This pragma can also be used as a program unit pragma for a package, in which case the
entity name is the name of the package, and the pragma indicates that the entire package is
considered obsolescent. In this case a client with’ing such a package violates the restriction,
and the with statement is flagged with warnings if the warning option is set.

If the Version parameter is present (which must be exactly the identifier Ada_05, no other
argument is allowed), then the indication of obsolescence applies only when compiling in
Ada 2005 mode. This is primarily intended for dealing with the situations in the predefined
library where subprograms or packages have become defined as obsolescent in Ada 2005
(e.g. in Ada.Characters.Handling), but may be used anywhere.

The following examples show typical uses of this pragma:

package p is
pragma Obsolescent (p, Message => "use pp instead of p");
end p;

package q is
procedure q2;
pragma Obsolescent ("use g2new instead");

type R is new integer;

pragma Obsolescent
(Entity => R,
Message => "use RR in Ada 2005",
Version => Ada_05);

type M is record
F1 : Integer;
F2 : Integer;
pragma Obsolescent;
F3 : Integer;

end record;

type E is (a, bc, ’d’, quack);
pragma Obsolescent (Entity => bc)
pragma Obsolescent (Entity => ’d’)

function "+"
(a, b : character) return character;
pragma Obsolescent (Entity => "+");
end;

Note that, as for all pragmas, if you use a pragma argument identifier, then all subsequent
parameters must also use a pragma argument identifier. So if you specify "Entity =>" for
the Entity argument, and a Message argument is present, it must be preceded by "Message
:> n .

42 GNAT Reference Manual

Pragma Optimize_Alignment

Syntax:

pragma Optimize_Alignment (TIME | SPACE | OFF);

This is a configuration pragma which affects the choice of default alignments for types where
no alignment is explicitly specified. There is a time/space trade-off in the selection of these
values. Large alignments result in more efficient code, at the expense of larger data space,
since sizes have to be increased to match these alignments. Smaller alignments save space,
but the access code is slower. The normal choice of default alignments (which is what you
get if you do not use this pragma, or if you use an argument of OFF), tries to balance these
two requirements.

Specifying SPACE causes smaller default alignments to be chosen in two cases. First
any packed record is given an alignment of 1. Second, if a size is given for the type, then
the alignment is chosen to avoid increasing this size. For example, consider:

type R is record
X : Integer;
Y : Character;
end record;

for R’Size use 5%8;

In the default mode, this type gets an alignment of 4, so that access to the Integer field X
are efficient. But this means that objects of the type end up with a size of 8 bytes. This
is a valid choice, since sizes of objects are allowed to be bigger than the size of the type,
but it can waste space if for example fields of type R appear in an enclosing record. If the
above type is compiled in Optimize_Alignment (Space) mode, the alignment is set to 1.

Specifying TIME causes larger default alignments to be chosen in the case of small types
with sizes that are not a power of 2. For example, consider:
type R is record
A : Character;
B : Character;

C : Boolean;
end record;

pragma Pack (R);
for R’Size use 17;

The default alignment for this record is normally 1, but if this type is compiled in Optimize_
Alignment (Time) mode, then the alignment is set to 4, which wastes space for objects of
the type, since they are now 4 bytes long, but results in more efficient access when the
whole record is referenced.

As noted above, this is a configuration pragma, and there is a requirement that all
units in a partition be compiled with a consistent setting of the optimization setting. This
would normally be achieved by use of a configuration pragma file containing the appropriate
setting. The exception to this rule is that units with an explicit configuration pragma in the
same file as the source unit are excluded from the consistency check, as are all predefined
units. The latter are compiled by default in pragma Optimize_Alignment (Off) mode if no
pragma appears at the start of the file.

Chapter 1: Implementation Defined Pragmas 43

Pragma Ordered

Syntax:
pragma Ordered (enumeration_first_subtype_LOCAL_NAME) ;

Most enumeration types are from a conceptual point of view unordered. For example,
consider:

type Color is (Red, Blue, Green, Yellow);

By Ada semantics Blue > Red and Green > Blue, but really these relations make no sense;
the enumeration type merely specifies a set of possible colors, and the order is unimportant.

For unordered enumeration types, it is generally a good idea if clients avoid comparisons
(other than equality or inequality) and explicit ranges. (A client is a unit where the type is
referenced, other than the unit where the type is declared, its body, and its subunits.) For
example, if code buried in some client says:

if Current_Color < Yellow then ...

if Current_Color in Blue .. Green then ...
then the client code is relying on the order, which is undesirable. It makes the code hard to
read and creates maintenance difficulties if entries have to be added to the enumeration type.
Instead, the code in the client should list the possibilities, or an appropriate subtype should
be declared in the unit that declares the original enumeration type. E.g., the following
subtype could be declared along with the type Color:

subtype RBG is Color range Red .. Green;

and then the client could write:

if Current_Color in RBG then ...

if Current_Color = Blue or Current_Color = Green then ...
However, some enumeration types are legitimately ordered from a conceptual point of view.
For example, if you declare:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

then the ordering imposed by the language is reasonable, and clients can depend on it,
writing for example:

if D in Mon .. Fri then ...

if D < Wed then ...
The pragma ‘Ordered’ is provided to mark enumeration types that are conceptually ordered,
alerting the reader that clients may depend on the ordering. GNAT provides a pragma to
mark enumerations as ordered rather than one to mark them as unordered, since in our
experience, the great majority of enumeration types are conceptually unordered.

The types Boolean, Character, Wide_Character, and Wide_Wide_Character are con-
sidered to be ordered types, so each is declared with a pragma Ordered in package Standard.

Normally pragma Ordered serves only as documentation and a guide for coding stan-
dards, but GNAT provides a warning switch ‘-gnatw.u’ that requests warnings for inap-
propriate uses (comparisons and explicit subranges) for unordered types. If this switch is
used, then any enumeration type not marked with pragma Ordered will be considered as
unordered, and will generate warnings for inappropriate uses.

For additional information please refer to the description of the ‘~gnatw.u’ switch in the
GNAT User’s Guide.

44 GNAT Reference Manual

Pragma Passive

Syntax:
pragma Passive [(Semaphore | No)];

Syntax checked, but otherwise ignored by GNAT. This is recognized for compatibility with
DEC Ada 83 implementations, where it is used within a task definition to request that a
task be made passive. If the argument Semaphore is present, or the argument is omitted,
then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and
that optimization of context switch with this task is permitted and desired. If the argument
No is present, the task must not be optimized. GNAT does not attempt to optimize any
tasks in this manner (since protected objects are available in place of passive tasks).

Pragma Persistent_BSS

Syntax:
pragma Persistent_BSS [(LOCAL_NAME)]

This pragma allows selected objects to be placed in the .persistent_bss section. On some
targets the linker and loader provide for special treatment of this section, allowing a program
to be reloaded without affecting the contents of this data (hence the name persistent).

There are two forms of usage. If an argument is given, it must be the local name of a
library level object, with no explicit initialization and whose type is potentially persistent.
If no argument is given, then the pragma is a configuration pragma, and applies to all
library level objects with no explicit initialization of potentially persistent types.

A potentially persistent type is a scalar type, or a non-tagged, non-discriminated record,
all of whose components have no explicit initialization and are themselves of a potentially
persistent type, or an array, all of whose constraints are static, and whose component type
is potentially persistent.

If this pragma is used on a target where this feature is not supported, then the pragma
will be ignored. See also pragma Linker_Section.

Pragma Polling

Syntax:
pragma Polling (ON | OFF);

This pragma controls the generation of polling code. This is normally off. If pragma Polling
(ON) is used then periodic calls are generated to the routine Ada.Exceptions.Poll. This
routine is a separate unit in the runtime library, and can be found in file ‘a~excpol.adb’.

Pragma Polling can appear as a configuration pragma (for example it can be placed
in the ‘gnat.adc’ file) to enable polling globally, or it can be used in the statement or
declaration sequence to control polling more locally.

A call to the polling routine is generated at the start of every loop and at the start
of every subprogram call. This guarantees that the Poll routine is called frequently, and
places an upper bound (determined by the complexity of the code) on the period between
two Poll calls.

The primary purpose of the polling interface is to enable asynchronous aborts on targets
that cannot otherwise support it (for example Windows NT), but it may be used for any

Chapter 1: Implementation Defined Pragmas 45

other purpose requiring periodic polling. The standard version is null, and can be replaced
by a user program. This will require re-compilation of the Ada.Exceptions package that
can be found in files ‘a-except.ads’ and ‘a-except.adb’.

A standard alternative unit (in file ‘4wexcpol.adb’ in the standard GNAT distribution)
is used to enable the asynchronous abort capability on targets that do not normally support
the capability. The version of Pol1 in this file makes a call to the appropriate runtime routine
to test for an abort condition.

Note that polling can also be enabled by use of the ‘~gnatP’ switch. See Section “Switches
for gee” in GNAT User’s Guide, for details.

Pragma Postcondition
Syntax:

pragma Postcondition (
[Check =>] Boolean_Expression
[, [Message =>] String_Expression]);
The Postcondition pragma allows specification of automatic postcondition checks for sub-
programs. These checks are similar to assertions, but are automatically inserted just prior to
the return statements of the subprogram with which they are associated (including implicit
returns at the end of procedure bodies and associated exception handlers).

In addition, the boolean expression which is the condition which must be true may
contain references to function’Result in the case of a function to refer to the returned value.

Postcondition pragmas may appear either immediately following the (separate) dec-
laration of a subprogram, or at the start of the declarations of a subprogram body. Only
other pragmas may intervene (that is appear between the subprogram declaration and its
postconditions, or appear before the postcondition in the declaration sequence in a subpro-
gram body). In the case of a postcondition appearing after a subprogram declaration, the
formal arguments of the subprogram are visible, and can be referenced in the postcondition
expressions.

The postconditions are collected and automatically tested just before any return (implicit
or explicit) in the subprogram body. A postcondition is only recognized if postconditions
are active at the time the pragma is encountered. The compiler switch ‘gnata’ turns on all
postconditions by default, and pragma Check_Policy with an identifier of Postcondition
can also be used to control whether postconditions are active.

The general approach is that postconditions are placed in the spec if they represent
functional aspects which make sense to the client. For example we might have:

function Direction return Integer;
pragma Postcondition
(Direction’Result = +1
or else
Direction’Result = -1);
which serves to document that the result must be +1 or -1, and will test that this is the
case at run time if postcondition checking is active.

Postconditions within the subprogram body can be used to check that some internal
aspect of the implementation, not visible to the client, is operating as expected. For instance
if a square root routine keeps an internal counter of the number of times it is called, then
we might have the following postcondition:

46 GNAT Reference Manual

Sqrt_Calls : Natural := O;

function Sqrt (Arg : Float) return Float is
pragma Postcondition
(Sqrt_Calls = Sqrt_Calls’01d + 1);

end Sqrt

As this example, shows, the use of the 01d attribute is often useful in postconditions to
refer to the state on entry to the subprogram.

Note that postconditions are only checked on normal returns from the subprogram. If an
abnormal return results from raising an exception, then the postconditions are not checked.

If a postcondition fails, then the exception System.Assertions.Assert_Failure is
raised. If a message argument was supplied, then the given string will be used as the
exception message. If no message argument was supplied, then the default message has
the form "Postcondition failed at file:line". The exception is raised in the context of the
subprogram body, so it is possible to catch postcondition failures within the subprogram
body itself.

Within a package spec, normal visibility rules in Ada would prevent forward references
within a postcondition pragma to functions defined later in the same package. This would
introduce undesirable ordering constraints. To avoid this problem, all postcondition prag-
mas are analyzed at the end of the package spec, allowing forward references.

The following example shows that this even allows mutually recursive postconditions as
in:
package Parity_Functions is
function 0dd (X : Natural) return Boolean;
pragma Postcondition
(0dd’Result =
(x=1
or else

(x /= 0 and then Even (X - 1))));

function Even (X : Natural) return Boolean;
pragma Postcondition
(Even’Result =
(x=0
or else
(x /=1 and then 0dd (X - 1))));

end Parity_Functions;

There are no restrictions on the complexity or form of conditions used within
Postcondition pragmas. The following example shows that it is even possible to verify
performance behavior.

package Sort is

Performance : constant Float;
-- Performance constant set by implementation
-- to match target architecture behavior.

procedure Treesort (Arg : String);
-- Sorts characters of argument using N*logN sort
pragma Postcondition

Chapter 1: Implementation Defined Pragmas 47

(Float (Clock - Clock’0ld) <=

Float (Arg’Length) *

log (Float (Arg’Length)) *

Performance) ;

end Sort;

Note: postcondition pragmas associated with subprograms that are marked as
Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set)
are accepted and legality-checked by the compiler, but are ignored at run-time even if
postcondition checking is enabled.

Pragma Precondition

Syntax:
pragma Precondition (
[Check =>] Boolean_Expression
[, [Message =>] String_Expression]);

The Precondition pragma is similar to Postcondition except that the corresponding
checks take place immediately upon entry to the subprogram, and if a precondition fails,
the exception is raised in the context of the caller, and the attribute 'Result cannot be used
within the precondition expression.

Otherwise, the placement and visibility rules are identical to those described for post-
conditions. The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;
pragma Precondition (Arg >= 0.0)

end Math_Functions;
Precondition pragmas may appear either immediately following the (separate) declara-
tion of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-
conditions, or appear before the postcondition in the declaration sequence in a subprogram
body).

Note: postcondition pragmas associated with subprograms that are marked as
Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set)
are accepted and legality-checked by the compiler, but are ignored at run-time even if
postcondition checking is enabled.

Pragma Profile (Ravenscar)

Syntax:

pragma Profile (Ravenscar);

A configuration pragma that establishes the following set of configuration pragmas:

Task_Dispatching Policy (FIFO_Within_Priorities)
[RM D.2.2] Tasks are dispatched following a preemptive priority-ordered
scheduling policy.

Locking_Policy (Ceiling_Locking)
[RM D.3] While tasks and interrupts execute a protected action, they inherit
the ceiling priority of the corresponding protected object.

48 GNAT Reference Manual

plus the following set of restrictions:

Max_Entry_Queue_Length => 1
No task can be queued on a protected entry.

Max_Protected_Entries => 1
Max_Task_Entries => 0
No rendezvous statements are allowed.

No_Abort_Statements
No_Dynamic_Attachment
No_Dynamic_Priorities
No_Implicit_Heap_Allocations
No_Local_Protected_Objects
No_Local_Timing_Events
No_Protected_Type_Allocators
No_Relative_Delay
No_Requeue_Statements
No_Select_Statements
No_Specific_Termination_Handlers
No_Task_Allocators
No_Task_Hierarchy
No_Task_Termination
Simple_Barriers

The Ravenscar profile also includes the following restrictions that specify that there are
no semantic dependences on the corresponding predefined packages:

No_Dependence => Ada.Asynchronous_Task_Control
No_Dependence => Ada.Calendar

No_Dependence => Ada.Execution_Time.Group_Budget
No_Dependence => Ada.Execution_Time.Timers

No_Dependence => Ada.Task_Attributes

No_Dependence => System.Multiprocessors.Dispatching_Domains

This set of configuration pragmas and restrictions correspond to the definition of
the “Ravenscar Profile” for limited tasking, devised and published by the International
Real-Time Ada Workshop, 1997, and whose most recent description is available at
http://www-users.cs.york.ac.uk/ burns/ravenscar.ps.

The original definition of the profile was revised at subsequent IRTAW meetings. It
has been included in the ISO Guide for the Use of the Ada Programming Language
in High Integrity Systems, and has been approved by ISO/IEC/SC22/WG9 for
inclusion in the next revision of the standard. The formal definition given by the
Ada Rapporteur Group (ARG) can be found in two Ada Issues (AI-249 and AI-305)
available at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt and
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt.

The above set is a superset of the restrictions provided by pragma Profile
(Restricted), it includes six additional restrictions (Simple_Barriers, No_Select_
Statements, No_Calendar, No_Implicit_Heap_Allocations, No_Relative_Delay and
No_Task_Termination). This means that pragma Profile (Ravenscar), like the pragma

http://www-users.cs.york.ac.uk/~burns/ravenscar.ps
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt

Chapter 1: Implementation Defined Pragmas 49

Profile (Restricted), automatically causes the use of a simplified, more efficient version
of the tasking run-time system.

Pragma Profile (Restricted)

Syntax:
pragma Profile (Restricted);

A configuration pragma that establishes the following set of restrictions:
e No_Abort_Statements
e No_Entry_Queue
e No_Task_Hierarchy
e No_Task_Allocators
e No_Dynamic_Priorities
e No_Terminate_Alternatives
e No_Dynamic_Attachment
e No_Protected_Type_Allocators
e No_Local_Protected_Objects
e No_Requeue_Statements
e No_Task_Attributes_Package
e Max_Asynchronous_Select_Nesting = 0
e Max_Task_Entries = 0
e Max_Protected_Entries = 1
e Max_Select_Alternatives = 0
This set of restrictions causes the automatic selection of a simplified version of the run time

that provides improved performance for the limited set of tasking functionality permitted
by this set of restrictions.

Pragma Psect_Object

Syntax:

pragma Psect_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

This pragma is identical in effect to pragma Common_Object.

Pragma Pure_Function
Syntax:
pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

This pragma appears in the same declarative part as a function declaration (or a set of
function declarations if more than one overloaded declaration exists, in which case the

50 GNAT Reference Manual

pragma applies to all entities). It specifies that the function Entity is to be considered
pure for the purposes of code generation. This means that the compiler can assume that
there are no side effects, and in particular that two calls with identical arguments produce
the same result. It also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to ensure that this promise
is met, so Pure_Function can be used with functions that are conceptually pure, even if
they do modify global variables. For example, a square root function that is instrumented
to count the number of times it is called is still conceptually pure, and can still be optimized,
even though it modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note also that the normal rules excluding optimization of subprograms in pure units
(when parameter types are descended from System.Address, or when the full view of a
parameter type is limited), do not apply for the Pure_Function case. If you explicitly
specify Pure_Function, the compiler may optimize away calls with identical arguments,
and if that results in unexpected behavior, the proper action is not to use the pragma for
subprograms that are not (conceptually) pure.

Note: Most functions in a Pure package are automatically pure, and there is no need to
use pragma Pure_Function for such functions. One exception is any function that has at
least one formal of type System.Address or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the Address parameter may
be functioning as a pointer and that the referenced data may change even if the address
value does not. Similarly, imported functions are not considered to be pure by default, since
there is no way of checking that they are in fact pure. The use of pragma Pure_Function
for such a function will override these default assumption, and cause the compiler to treat
a designated subprogram as pure in these cases.

Note: If pragma Pure_Function is applied to a renamed function, it applies to the
underlying renamed function. This can be used to disambiguate cases of overloading where
some but not all functions in a set of overloaded functions are to be designated as pure.

If pragma Pure_Function is applied to a library level function, the function is also
considered pure from an optimization point of view, but the unit is not a Pure unit in the
categorization sense. So for example, a function thus marked is free to with non-pure units.

Pragma Remote_Access_Type

Syntax:
pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME);

This pragma appears in the formal part of a generic declaration. It specifies an exception
to the RM rule from E.2.2(17/2), which forbids the use of a remote access to class-wide
type as actual for a formal access type.

When this pragma applies to a formal access type Entity, that type is treated as a
remote access to class-wide type in the generic. It must be a formal general access type,
and its designated type must be the class-wide type of a formal tagged limited private type
from the same generic declaration.

In the generic unit, the formal type is subject to all restrictions pertaining to remote
access to class-wide types. At instantiation, the actual type must be a remote access to
class-wide type.

Chapter 1: Implementation Defined Pragmas 51

Pragma Restriction_Warnings

Syntax:
pragma Restriction_Warnings
(restriction_IDENTIFIER {, restriction_IDENTIFIER});
This pragma allows a series of restriction identifiers to be specified (the list of allowed
identifiers is the same as for pragma Restrictions). For each of these identifiers the
compiler checks for violations of the restriction, but generates a warning message rather
than an error message if the restriction is violated.

Pragma Shared

This pragma is provided for compatibility with Ada 83. The syntax and semantics are
identical to pragma Atomic.

Pragma Short_Circuit_And_Or

This configuration pragma causes any occurrence of the AND operator applied to operands
of type Standard.Boolean to be short-circuited (i.e. the AND operator is treated as if
it were AND THEN). Or is similarly treated as OR ELSE. This may be useful in the
context of certification protocols requiring the use of short-circuited logical operators. If
this configuration pragma occurs locally within the file being compiled, it applies only to
the file being compiled. There is no requirement that all units in a partition use this option.

Pragma Short_Descriptors

Syntax:
pragma Short_Descriptors

In VMS versions of the compiler, this configuration pragma causes all occurrences of the
mechanism types Descriptor[_xxx| to be treated as Short_Descriptor[_xxx]|. This is helpful
in porting legacy applications from a 32-bit environment to a 64-bit environment. This
pragma is ignored for non-VMS versions.

Pragma Simple_Storage_Pool_Type

Syntax:
pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);

A type can be established as a “simple storage pool type” by applying the representation
pragma Simple_Storage_Pool_Type to the type. A type named in the pragma must be
a library-level immutably limited record type or limited tagged type declared immediately
within a package declaration. The type can also be a limited private type whose full type
is allowed as a simple storage pool type.

For a simple storage pool type SSP, nonabstract primitive subprograms Allocate,
Deallocate, and Storage_Size can be declared that are subtype conformant with the
following subprogram declarations:

procedure Allocate
(Pool : in out SSP;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;

52 GNAT Reference Manual

Alignment : System.Storage_Elements.Storage_Count) ;

procedure Deallocate
(Pool : in out SSP;

Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count) ;

function Storage_Size (Pool : SSP)
return System.Storage_Elements.Storage_Count;
Procedure Allocate must be declared, whereas Deallocate and Storage_Size are op-
tional. If Deallocate is not declared, then applying an unchecked deallocation has no
effect other than to set its actual parameter to null. If Storage_Size is not declared, then
the Storage_Size attribute applied to an access type associated with a pool object of type
SSP returns zero. Additional operations can be declared for a simple storage pool type
(such as for supporting a mark/release storage-management discipline).

An object of a simple storage pool type can be associated with an access type by speci-
fying the attribute Simple_Storage_Pool. For example:

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc’Simple_Storage_Pool use My_Pool;

See attribute Simple_Storage_Pool for further details.

Pragma Source_File_Name
Syntax:

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

pragma Source_File_Name (

[Unit_Name =>] unit_NAME,

Body_File_Name => STRING_LITERAL,

[Index => INTEGER_LITERAL]);
Use this to override the normal naming convention. It is a configuration pragma, and so has
the usual applicability of configuration pragmas (i.e. it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on how it is used. unit_name
is mapped to file_name_literal. The identifier for the second argument is required, and
indicates whether this is the file name for the spec or for the body.

The optional Index argument should be used when a file contains multiple units, and
when you do not want to use gnatchop to separate then into multiple files (which is the
recommended procedure to limit the number of recompilations that are needed when some
sources change). For instance, if the source file ‘source.ada’ contains

package B is

end B;

Chapter 1: Implementation Defined Pragmas 53

with B;
procedure A is
begin

end A;
you could use the following configuration pragmas:

pragma Source_File_Name

(B, Spec_File_Name => "source.ada", Index => 1);
pragma Source_File_Name

(A, Body_File_Name => "source.ada", Index => 2);

Note that the gnatname utility can also be used to generate those configuration pragmas.

Another form of the Source_File_Name pragma allows the specification of patterns
defining alternative file naming schemes to apply to all files.

pragma Source_File_Name
([Spec_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Body_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Subunit_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the point at which
the unit name is to be inserted in the pattern string to form the file name. The second
argument is optional. If present it specifies the casing of the unit name in the resulting file
name string. The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.

Note that Source_File_Name pragmas should not be used if you are using project files.
The reason for this rule is that the project manager is not aware of these pragmas, and
so other tools that use the projet file would not be aware of the intended naming conven-
tions. If you are using project files, file naming is controlled by Source_File_Name_Project
pragmas, which are usually supplied automatically by the project manager. A pragma
Source_File_Name cannot appear after a [Pragma Source_File_Name_Project|, page 53.

For more details on the use of the Source_File_Name pragma, See Section “Using Other
File Names” in GNAT User’s Guide, and Section “Alternative File Naming Schemes” in
GNAT User’s Guide.

Pragma Source_File_Name_Project

This pragma has the same syntax and semantics as pragma Source_File_Name. It is
only allowed as a stand alone configuration pragma. It cannot appear after a [Pragma
Source_File_Name], page 52, and most importantly, once pragma Source_File_Name_Project
appears, no further Source_File_Name pragmas are allowed.

54 GNAT Reference Manual

The intention is that Source_File_ZName_Project pragmas are always generated by the
Project Manager in a manner consistent with the naming specified in a project file, and when
naming is controlled in this manner, it is not permissible to attempt to modify this naming
scheme using Source_File_Name or Source_File_Name_Project pragmas (which would not
be known to the project manager).

Pragma Source_Reference

Syntax:
pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);

This pragma must appear as the first line of a source file. integer_literal is the logical
line number of the line following the pragma line (for use in error messages and debugging
information). string_literal is a static string constant that specifies the file name to be used
in error messages and debugging information. This is most notably used for the output of
gnatchop with the ‘-r’ switch, to make sure that the original unchopped source file is the
one referred to.

The second argument must be a string literal, it cannot be a static string expression
other than a string literal. This is because its value is needed for error messages issued by
all phases of the compiler.

Pragma Static_Elaboration_Desired

Syntax:

pragma Static_Elaboration_Desired;

This pragma is used to indicate that the compiler should attempt to initialize statically
the objects declared in the library unit to which the pragma applies, when these objects
are initialized (explicitly or implicitly) by an aggregate. In the absence of this pragma,
aggregates in object declarations are expanded into assignments and loops, even when the
aggregate components are static constants. When the aggregate is present the compiler
builds a static expression that requires no run-time code, so that the initialized object
can be placed in read-only data space. If the components are not static, or the aggregate
has more that 100 components, the compiler emits a warning that the pragma cannot be
obeyed. (See also the restriction No_Implicit_Loops, which supports static construction of
larger aggregates with static components that include an others choice.)

Pragma Stream_Convert

Syntax:
pragma Stream_Convert (

[Entity =>] type_LOCAL_NAME,

[Read =>] function_NAME,

[Write =>] function_NAME);
This pragma provides an efficient way of providing stream functions for types defined in
packages. Not only is it simpler to use than declaring the necessary functions with attribute
representation clauses, but more significantly, it allows the declaration to made in such a
way that the stream packages are not loaded unless they are needed. The use of the
Stream_Convert pragma adds no overhead at all, unless the stream attributes are actually
used on the designated type.

Chapter 1: Implementation Defined Pragmas 55

The first argument specifies the type for which stream functions are provided. The
second parameter provides a function used to read values of this type. It must name a
function whose argument type may be any subtype, and whose returned type must be the
type given as the first argument to the pragma.

The meaning of the Read parameter is that if a stream attribute directly or indirectly
specifies reading of the type given as the first parameter, then a value of the type given as
the argument to the Read function is read from the stream, and then the Read function is
used to convert this to the required target type.

Similarly the Write parameter specifies how to treat write attributes that directly or
indirectly apply to the type given as the first parameter. It must have an input parameter
of the type specified by the first parameter, and the return type must be the same as the
input type of the Read function. The effect is to first call the Write function to convert to
the given stream type, and then write the result type to the stream.

The Read and Write functions must not be overloaded subprograms. If necessary
renamings can be supplied to meet this requirement. The usage of this attribute is
best illustrated by a simple example, taken from the GNAT implementation of package

Ada.Strings.Unbounded:

function To_Unbounded (S : String)
return Unbounded_String
renames To_Unbounded_String;

pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);
The specifications of the referenced functions, as given in the Ada Reference Manual are:

function To_Unbounded_String (Source : String)
return Unbounded_String;

function To_String (Source : Unbounded_String)
return String;
The effect is that if the value of an unbounded string is written to a stream, then the
representation of the item in the stream is in the same format that would be used for
Standard.String’Output, and this same representation is expected when a value of this
type is read from the stream. Note that the value written always includes the bounds, even
for Unbounded_String’Write, since Unbounded_String is not an array type.

Pragma Style_Checks

Syntax:
pragma Style_Checks (string LITERAL | ALL_CHECKS |
On | 0ff [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built in style
checking provided by GNAT. The compiler switches, if set, provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the ‘gnat.adc’
file).

The form with a string literal specifies which style options are to be activated. These
are additive, so they apply in addition to any previously set style check options. The codes

56 GNAT Reference Manual

for the options are the same as those used in the ‘~gnaty’ switch to gcc or gnatmake. For
example the following two methods can be used to enable layout checking:
[]

pragma Style_Checks ("1");

gcc -c -gnatyl ...

The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnaty switch with no options. See Section “About This Guide” in GNAT User’s Guide,
for details.)

Note: the behavior is slightly different in GNAT mode (‘-gnatg’ used). In this case,
ALL_CHECKS implies the standard set of GNAT mode style check options (i.e. equivalent
to -gnatyg).

The forms with 0ff and On can be used to temporarily disable style checks as shown in
the following example:

pragma Style_Checks ("k"); -- requires keywords in lower case

pragma Style_Checks (0ff); -- turn off style checks

NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on

NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or 0ff. The effect
is to turn of semantic style checks for the specified entity, as shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;

Rfl : Integer := ARG; -- incorrect, wrong case

pragma Style_Checks (0ff, Arg);

Rf2 : Integer := ARG; -- 0K, no error

Pragma Subtitle

Syntax:
pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is ignored by
GNAT.

Pragma Suppress

Syntax:
pragma Suppress (Identifier [, [On =>] Name]);

This is a standard pragma, and supports all the check names required in the RM. It is in-
cluded here because GNAT recognizes one additional check name: Alignment_Check which
can be used to suppress alignment checks on addresses used in address clauses. Such checks
can also be suppressed by suppressing range checks, but the specific use of Alignment_Check
allows suppression of alignment checks without suppressing other range checks.

Chapter 1: Implementation Defined Pragmas 57

Note that pragma Suppress gives the compiler permission to omit checks, but does not
require the compiler to omit checks. The compiler will generate checks if they are essentially
free, even when they are suppressed. In particular, if the compiler can prove that a certain
check will necessarily fail, it will generate code to do an unconditional “raise”, even if checks
are suppressed. The compiler warns in this case.

Of course, run-time checks are omitted whenever the compiler can prove that they will
not fail, whether or not checks are suppressed.

Pragma Suppress_All

Syntax:
pragma Suppress_All;

This pragma can appear anywhere within a unit. The effect is to apply Suppress (A11l_
Checks) to the unit in which it appears. This pragma is implemented for compatibility
with DEC Ada 83 usage where it appears at the end of a unit, and for compatibility with
Rational Ada, where it appears as a program unit pragma. The use of the standard Ada
pragma Suppress (Al1l_Checks) as a normal configuration pragma is the preferred usage
in GNAT.

Pragma Suppress_Exception_Locations

Syntax:

pragma Suppress_Exception_Locations;

In normal mode, a raise statement for an exception by default generates an exception
message giving the file name and line number for the location of the raise. This is useful for
debugging and logging purposes, but this entails extra space for the strings for the messages.
The configuration pragma Suppress_Exception_Locations can be used to suppress the
generation of these strings, with the result that space is saved, but the exception message for
such raises is null. This configuration pragma may appear in a global configuration pragma
file, or in a specific unit as usual. It is not required that this pragma be used consistently
within a partition, so it is fine to have some units within a partition compiled with this
pragma and others compiled in normal mode without it.

Pragma Suppress_Initialization

Syntax:
pragma Suppress_Initialization ([Entity =>] subtype_Name) ;

Here subtype_Name is the name introduced by a type declaration or subtype declaration.
This pragma suppresses any implicit or explicit initialization for all variables of the given
type or subtype, including initialization resulting from the use of pragmas Normalize_Scalars
or Initialize_Scalars.

This is considered a representation item, so it cannot be given after the type is frozen.
It applies to all subsequent object declarations, and also any allocator that creates objects
of the type.

If the pragma is given for the first subtype, then it is considered to apply to the base
type and all its subtypes. If the pragma is given for other than a first subtype, then it
applies only to the given subtype. The pragma may not be given after the type is frozen.

58 GNAT Reference Manual

Pragma Task_Info

Syntax
pragma Task_Info (EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type System.Task_Info.Task_Info_
Type. The Task_Info pragma provides system dependent control over aspects of tasking
implementation, for example, the ability to map tasks to specific processors. For details on
the facilities available for the version of GNAT that you are using, see the documentation
in the spec of package System.Task_Info in the runtime library.

Pragma Task_Name

Syntax
pragma Task_Name (string EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type String, and provides a name to be
used for the task instance when the task is created. Note that this expression is not required
to be static, and in particular, it can contain references to task discriminants. This facility
can be used to provide different names for different tasks as they are created, as illustrated
in the example below.

The task name is recorded internally in the run-time structures and is accessible to tools
like the debugger. In addition the routine Ada.Task_Identification.Image will return
this string, with a unique task address appended.

-- Example of the use of pragma Task_Name

with Ada.Task_Identification;
use Ada.Task_Identification;
with Text_I0; use Text_IO;
procedure t3 is

type Astring is access String;

task type Task_Typ (Name : access String) is
pragma Task_Name (Name.all);
end Task_Typ;

task body Task_Typ is

Nam : constant String := Image (Current_Task);
begin

Put_Line ("-->" & Nam (1 .. 14) & "<--");
end Task_Typ;

type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;

begin
Task_Var :=
new Task_Typ (new String’("This is task 1"));
Task_Var :=
new Task_Typ (new String’("This is task 2"));
end;

Chapter 1: Implementation Defined Pragmas 59

Pragma Task_Storage

Syntax:

pragma Task_Storage (
[Task_Type =>] LOCAL_NAME,
[Top_Guard =>] static_integer_ EXPRESSION) ;
This pragma specifies the length of the guard area for tasks. The guard area is an additional
storage area allocated to a task. A value of zero means that either no guard area is created
or a minimal guard area is created, depending on the target. This pragma can appear
anywhere a Storage_Size attribute definition clause is allowed for a task type.

Pragma Test_Case

Syntax:

pragma Test_Case (
[Name =>] static_string_Expression
, [Mode >] (Nominal | Robustness)
[, Requires => Boolean_Expression]
[, Ensures => Boolean_Expression]);

The Test_Case pragma allows defining fine-grain specifications for use by testing and veri-
fication tools. The compiler checks its validity but the presence of pragma Test_Case does
not lead to any modification of the code generated by the compiler.

Test_Case pragmas may only appear immediately following the (separate) declaration
of a subprogram in a package declaration, inside a package spec unit. Only other pragmas
may intervene (that is appear between the subprogram declaration and a test case).

The compiler checks that boolean expressions given in Requires and Ensures are valid,
where the rules for Requires are the same as the rule for an expression in Precondition
and the rules for Ensures are the same as the rule for an expression in Postcondition. In
particular, attributes >01d and ’Result can only be used within the Ensures expression.
The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;
pragma Test_Case (Name => "Test 1",

Mode => Nominal,

Requires => Arg < 100,

Ensures => Sqrt’Result < 10);

end Math_Functions;

The meaning of a test case is that, if the associated subprogram is executed in a context
where Requires holds, then Ensures should hold when the subprogram returns. Mode
Nominal indicates that the input context should satisfy the precondition of the subprogram,
and the output context should then satisfy its postcondition. More Robustness indicates
that the pre- and postcondition of the subprogram should be ignored for this test case.

Pragma Thread_Local_Storage

Syntax:
pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);

60 GNAT Reference Manual

This pragma specifies that the specified entity, which must be a variable declared in a library
level package, is to be marked as "Thread Local Storage" (TLS). On systems supporting this
(which include Solaris, GNU/Linux and VxWorks 6), this causes each thread (and hence
each Ada task) to see a distinct copy of the variable.

The variable may not have default initialization, and if there is an explicit initialization,
it must be either null for an access variable, or a static expression for a scalar variable.
This provides a low level mechanism similar to that provided by the Ada.Task_Attributes
package, but much more efficient and is also useful in writing interface code that will interact
with foreign threads.

If this pragma is used on a system where TLS is not supported, then an error message
will be generated and the program will be rejected.

Pragma Time_Slice

Syntax:
pragma Time_Slice (static_duration_EXPRESSION);

For implementations of GNAT on operating systems where it is possible to supply a time
slice value, this pragma may be used for this purpose. It is ignored if it is used in a system
that does not allow this control, or if it appears in other than the main program unit. Note
that the effect of this pragma is identical to the effect of the DEC Ada 83 pragma of the
same name when operating under OpenVMS systems.

Pragma Title

Syntax:
pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=
[Title =>] STRING_LITERAL,
| [Subtitle =>] STRING_LITERAL
Syntax checked but otherwise ignored by GNAT. This is a listing control pragma used in
DEC Ada 83 implementations to provide a title and/or subtitle for the program listing.
The program listing generated by GNAT does not have titles or subtitles.

Unlike other pragmas, the full flexibility of named notation is allowed for this pragma,
i.e. the parameters may be given in any order if named notation is used, and named and
positional notation can be mixed following the normal rules for procedure calls in Ada.

Pragma Unchecked_Union

Syntax:
pragma Unchecked_Union (first_subtype_LOCAL_NAME);

This pragma is used to specify a representation of a record type that is equivalent to a C
union. It was introduced as a GNAT implementation defined pragma in the GNAT Ada 95
mode. Ada 2005 includes an extended version of this pragma, making it language defined,
and GNAT fully implements this extended version in all language modes (Ada 83, Ada 95,
and Ada 2005). For full details, consult the Ada 2005 Reference Manual, section B.3.3.

Chapter 1: Implementation Defined Pragmas 61

Pragma Unimplemented_Unit

Syntax:
pragma Unimplemented_Unit;

If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the
message ‘xxx not implemented’, where xxx is the name of the current compilation unit.
This pragma is intended to allow the compiler to handle unimplemented library units in a
clean manner.

The abort only happens if code is being generated. Thus you can use specs of unimple-
mented packages in syntax or semantic checking mode.

Pragma Universal_Aliasing

Syntax:
pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];

type_.LOCAL_NAME must refer to a type declaration in the current declarative part. The
effect is to inhibit strict type-based aliasing optimization for the given type. In other
words, the effect is as though access types designating this type were subject to pragma
No_Strict_Aliasing. For a detailed description of the strict aliasing optimization, and the
situations in which it must be suppressed, See Section “Optimization and Strict Aliasing”
in GNAT User’s Guide.

Pragma Universal_Data

Syntax:

pragma Universal_Data [(library_unit_Name)];

This pragma is supported only for the AAMP target and is ignored for other targets.
The pragma specifies that all library-level objects (Counter 0 data) associated with the
library unit are to be accessed and updated using universal addressing (24-bit addresses for
AAMP5) rather than the default of 16-bit Data Environment (DENV) addressing. Use of
this pragma will generally result in less efficient code for references to global data associated
with the library unit, but allows such data to be located anywhere in memory. This pragma
is a library unit pragma, but can also be used as a configuration pragma (including use in
the ‘gnat.adc’ file). The functionality of this pragma is also available by applying the -univ
switch on the compilations of units where universal addressing of the data is desired.

Pragma Unmodified

Syntax:
pragma Unmodified (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, in out param-
eters) whose names are listed are deliberately not assigned in the current source unit. This
suppresses warnings about the entities being referenced but not assigned, and in addition
a warning will be generated if one of these entities is in fact assigned in the same unit as
the pragma (or in the corresponding body, or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not modi-
fied, even though the spec suggests that it might be.

62 GNAT Reference Manual

Pragma Unreferenced

Syntax:

pragma Unreferenced (LOCAL_NAME {, LOCAL_NAME});

pragma Unreferenced (library_unit_NAME {, library_unit_NAME});
This pragma signals that the entities whose names are listed are deliberately not referenced
in the current source unit. This suppresses warnings about the entities being unreferenced,
and in addition a warning will be generated if one of these entities is in fact subsequently
referenced in the same unit as the pragma (or in the corresponding body, or one of its
subunits).

This is particularly useful for clearly signaling that a particular parameter is not ref-
erenced in some particular subprogram implementation and that this is deliberate. It can
also be useful in the case of objects declared only for their initialization or finalization side
effects.

If LOCAL_NAME identifies more than one matching homonym in the current scope, then
the entity most recently declared is the one to which the pragma applies. Note that in the
case of accept formals, the pragma Unreferenced may appear immediately after the keyword
do which allows the indication of whether or not accept formals are referenced or not to be
given individually for each accept statement.

The left hand side of an assignment does not count as a reference for the purpose of this
pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given.

Note that if a warning is desired for all calls to a given subprogram, regardless of whether
they occur in the same unit as the subprogram declaration, then this pragma should not
be used (calls from another unit would not be flagged); pragma Obsolescent can be used
instead for this purpose, see See [Pragma Obsolescent], page 40.

The second form of pragma Unreferenced is used within a context clause. In this case
the arguments must be unit names of units previously mentioned in with clauses (similar to
the usage of pragma Elaborate_A11l. The effect is to suppress warnings about unreferenced
units and unreferenced entities within these units.

Pragma Unreferenced_Objects

Syntax:
pragma Unreferenced_Objects (local_subtype_NAME {, local_subtype_NAME});

This pragma signals that for the types or subtypes whose names are listed, objects which
are declared with one of these types or subtypes may not be referenced, and if no references
appear, no warnings are given.

This is particularly useful for objects which are declared solely for their initialization and
finalization effect. Such variables are sometimes referred to as RAII variables (Resource
Acquisition Is Initialization). Using this pragma on the relevant type (most typically a
limited controlled type), the compiler will automatically suppress unwanted warnings about
these variables not being referenced.

Pragma Unreserve_All_Interrupts

Syntax:

Chapter 1: Implementation Defined Pragmas 63

pragma Unreserve_All_Interrupts;

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for a Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl1-C can be used to interrupt
execution.

If the pragma Unreserve_All_Interrupts appears anywhere in any unit in a program,
then all such interrupts are unreserved. This allows the program to handle these interrupts,
but disables their standard functions. For example, if this pragma is used, then pressing
Ctrl-C will not automatically interrupt execution. However, a program can then handle
the SIGINT interrupt as it chooses.

For a full list of the interrupts handled in a specific implementation, see the source code
for the spec of Ada.Interrupts.Names in file ‘a-intnam.ads’. This is a target dependent
file that contains the list of interrupts recognized for a given target. The documentation
in this file also specifies what interrupts are affected by the use of the Unreserve_All_
Interrupts pragma.

For a more general facility for controlling what interrupts can be handled, see pragma
Interrupt_State, which subsumes the functionality of the Unreserve_All_Interrupts
pragma.

Pragma Unsuppress

Syntax:
pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

This pragma undoes the effect of a previous pragma Suppress. If there is no corresponding
pragma Suppress in effect, it has no effect. The range of the effect is the same as for pragma
Suppress. The meaning of the arguments is identical to that used in pragma Suppress.

One important application is to ensure that checks are on in cases where code depends
on the checks for its correct functioning, so that the code will compile correctly even if the
compiler switches are set to suppress checks.

Pragma Use_VADS_Size

Syntax:
pragma Use_VADS_Size;

This is a configuration pragma. In a unit to which it applies, any use of the 'Size attribute is
automatically interpreted as a use of the "VADS_Size attribute. Note that this may result in
incorrect semantic processing of valid Ada 95 or Ada 2005 programs. This is intended to aid
in the handling of existing code which depends on the interpretation of Size as implemented
in the VADS compiler. See description of the VADS_Size attribute for further details.

Pragma Validity_Checks

Syntax:

pragma Validity_Checks (string LITERAL | ALL_CHECKS | On | Off);
This pragma is used in conjunction with compiler switches to control the built-in validity
checking provided by GNAT. The compiler switches, if set provide an initial setting for

64 GNAT Reference Manual

the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the ‘gnat.adc’
file).

The form with a string literal specifies which validity options are to be activated. The
validity checks are first set to include only the default reference manual settings, and then
a string of letters in the string specifies the exact set of options required. The form of this
string is exactly as described for the ‘-gnatVx’ compiler switch (see the GNAT users guide
for details). For example the following two methods can be used to enable validity checking
for mode in and in out subprogram parameters:

[]

pragma Validity_Checks ("im");

gcc -c -gnatVim ...
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnatva switch.

The forms with 0ff and On can be used to temporarily disable validity checks as shown
in the following example:

pragma Validity_Checks ("c"); -- validity checks for copies
pragma Validity_Checks (0ff); -- turn off validity checks

A := B; -- B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on

A :=C; -- C will be validity checked

Pragma Volatile

Syntax:
pragma Volatile (LOCAL_NAME);

This pragma is defined by the Ada Reference Manual, and the GNAT implementation is
fully conformant with this definition. The reason it is mentioned in this section is that a
pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83.
The Ada 95 / Ada 2005 implementation of pragma Volatile is upwards compatible with the
implementation in DEC Ada 83.

Pragma Warnings

Syntax:

pragma Warnings (On | Off);

pragma Warnings (On | Off, LOCAL_NAME);

pragma Warnings (static_string EXPRESSION) ;

pragma Warnings (On | 0ff, static_string_ EXPRESSION);
Normally warnings are enabled, with the output being controlled by the command line
switch. Warnings (0£f) turns off generation of warnings until a Warnings (On) is encountered
or the end of the current unit. If generation of warnings is turned off using this pragma, then
no warning messages are output, regardless of the setting of the command line switches.

The form with a single argument may be used as a configuration pragma.

Chapter 1: Implementation Defined Pragmas 65

If the LOCAL_NAME parameter is present, warnings are suppressed for the specified
entity. This suppression is effective from the point where it occurs till the end of the
extended scope of the variable (similar to the scope of Suppress).

The form with a single static_string_. EXPRESSION argument provides more precise
control over which warnings are active. The string is a list of letters specifying which
warnings are to be activated and which deactivated. The code for these letters is the same
as the string used in the command line switch controlling warnings. For a brief summary,
use the gnatmake command with no arguments, which will generate usage information
containing the list of warnings switches supported. For full details see Section “Warning
Message Control” in GNAT User’s Guide.

The specified warnings will be in effect until the end of the program or another pragma
Warnings is encountered. The effect of the pragma is cumulative. Initially the set of
warnings is the standard default set as possibly modified by compiler switches. Then each
pragma Warning modifies this set of warnings as specified. This form of the pragma may
also be used as a configuration pragma.

The fourth form, with an On|0ff parameter and a string, is used to control individual
messages, based on their text. The string argument is a pattern that is used to match
against the text of individual warning messages (not including the initial "warning: " tag).

The pattern may contain asterisks, which match zero or more characters in the message.
For example, you can use pragma Warnings (0ff, "#bits of*unused") to suppress the
warning message warning: 960 bits of "a" unused. No other regular expression notations
are permitted. All characters other than asterisk in these three specific cases are treated as
literal characters in the match.

There are two ways to use the pragma in this form. The OFF form can be used as a
configuration pragma. The effect is to suppress all warnings (if any) that match the pattern
string throughout the compilation.

The second usage is to suppress a warning locally, and in this case, two pragmas must
appear in sequence:
pragma Warnings (Off, Pattern);

. code where given warning is to be suppressed
pragma Warnings (On, Pattern);

In this usage, the pattern string must match in the Off and On pragmas, and at least one
matching warning must be suppressed.

Note: to write a string that will match any warning, use the string "**x*". It will not
work to use a single asterisk or two asterisks since this looks like an operator name. This
form with three asterisks is similar in effect to specifying pragma Warnings (0ff) except
that a matching pragma Warnings (On, "#x*") will be required. This can be helpful in
avoiding forgetting to turn warnings back on.

Note: the debug flag -gnatd.i (/NOWARNINGS_PRAGMAS in VMS) can be used to cause
the compiler to entirely ignore all WARNINGS pragmas. This can be useful in checking
whether obsolete pragmas in existing programs are hiding real problems.

Note: pragma Warnings does not affect the processing of style messages. See separate
entry for pragma Style_Checks for control of style messages.

66 GNAT Reference Manual

Pragma Weak_External

Syntax:
pragma Weak_External ([Entity =>] LOCAL_NAME);

LOCAL_NAME must refer to an object that is declared at the library level. This pragma
specifies that the given entity should be marked as a weak symbol for the linker. It is
equivalent to __attribute__((weak)) in GNU C and causes LOCAL_NAME to be emitted
as a weak symbol instead of a regular symbol, that is to say a symbol that does not have
to be resolved by the linker if used in conjunction with a pragma Import.

When a weak symbol is not resolved by the linker, its address is set to zero. This is
useful in writing interfaces to external modules that may or may not be linked in the final
executable, for example depending on configuration settings.

If a program references at run time an entity to which this pragma has been applied, and
the corresponding symbol was not resolved at link time, then the execution of the program
is erroneous. It is not erroneous to take the Address of such an entity, for example to guard
potential references, as shown in the example below.

Some file formats do not support weak symbols so not all target machines support this
pragma.
-- Example of the use of pragma Weak_External

package External_Module is
key : Integer;
pragma Import (C, key);
pragma Weak_External (key);
function Present return boolean;
end External_Module;

with System; use System;
package body External_Module is
function Present return boolean is
begin
return key’Address /= System.Null_Address;
end Present;
end External_Module;

Pragma Wide_Character_Encoding

Syntax:
pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);

This pragma specifies the wide character encoding to be used in program source text ap-
pearing subsequently. It is a configuration pragma, but may also be used at any point that
a pragma is allowed, and it is permissible to have more than one such pragma in a file,
allowing multiple encodings to appear within the same file.

The argument can be an identifier or a character literal. In the identifier case, it is
one of HEX, UPPER, SHIFT_JIS, EUC, UTF8, or BRACKETS. In the character literal case it is
correspondingly one of the characters ‘h’; ‘u’, ‘s’, ‘e’, ‘8", or ‘b’.

Note that when the pragma is used within a file, it affects only the encoding within that
file, and does not affect withed units, specs, or subunits.

Chapter 2: Implementation Defined Attributes 67

2 Implementation Defined Attributes

Ada defines (throughout the Ada reference manual, summarized in Annex K), a set of
attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
Reference Manual.

In addition, Ada allows implementations to define additional attributes whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.

Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

Abort_Signal

Standard’Abort_Signal (Standard is the only allowed prefix) provides the entity for the
special exception used to signal task abort or asynchronous transfer of control. Normally this
attribute should only be used in the tasking runtime (it is highly peculiar, and completely
outside the normal semantics of Ada, for a user program to intercept the abort exception).

Address_Size

Standard’Address_Size (Standard is the only allowed prefix) is a static constant giving
the number of bits in an Address. It is the same value as System.Address’Size, but has
the advantage of being static, while a direct reference to System.Address’Size is non-static
because Address is a private type.

Asm_Input

The Asm_Input attribute denotes a function that takes two parameters. The first is a
string, the second is an expression of the type designated by the prefix. The first (string)
argument is required to be a static expression, and is the constraint for the parameter, (e.g.
what kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL,
and are dependent on the configuration file used to built the GCC back end. Section 13.1
[Machine Code Insertions|, page 217

Asm_Output

The Asm_Output attribute denotes a function that takes two parameters. The first is a
string, the second is the name of a variable of the type designated by the attribute prefix.
The first (string) argument is required to be a static expression and designates the constraint
for the parameter (e.g. what kind of register is required). The second argument is the
variable to be updated with the result. The possible values for constraint are the same as
those used in the RTL, and are dependent on the configuration file used to build the GCC
back end. If there are no output operands, then this argument may either be omitted, or
explicitly given as No_Output_Operands. Section 13.1 [Machine Code Insertions|, page 217

68 GNAT Reference Manual

AST _Entry

This attribute is implemented only in OpenVMS versions of GNAT. Applied to the name
of an entry, it yields a value of the predefined type AST_Handler (declared in the predefined
package System, as extended by the use of pragma Extend_System (Aux_DEC)). This value
enables the given entry to be called when an AST occurs. For further details, refer to the
DEC Ada Language Reference Manual, section 9.12a.

Bit
obj ’Bit, where obj is any object, yields the bit offset within the storage unit (byte) that
contains the first bit of storage allocated for the object. The value of this attribute is of the

type Universal_Integer, and is always a non-negative number not exceeding the value of
System.Storage_Unit.

For an object that is a variable or a constant allocated in a register, the value is zero.
(The use of this attribute does not force the allocation of a variable to memory).

For an object that is a formal parameter, this attribute applies to either the matching
actual parameter or to a copy of the matching actual parameter.

For an access object the value is zero. Note that obj.all’Bit is subject to an Access_

Check for the designated object. Similarly for a record component X.C’Bit is subject to a
discriminant check and X (I).Bit and X (I1..I2)’Bit are subject to index checks.

This attribute is designed to be compatible with the DEC Ada 83 definition and imple-
mentation of the Bit attribute.

Bit_Position

R.C’Bit_Position, where R is a record object and C is one of the fields of the record
type, yields the bit offset within the record contains the first bit of storage allocated for the
object. The value of this attribute is of the type Universal_Integer. The value depends
only on the field C and is independent of the alignment of the containing record R.

Compiler_Version

Standard’Compiler_Version (Standard is the only allowed prefix) yields a static string
identifying the version of the compiler being used to compile the unit containing the at-
tribute reference. A typical result would be something like "GNAT wversion (20090221)".

Code_Address

The ’Address attribute may be applied to subprograms in Ada 95 and Ada 2005, but
the intended effect seems to be to provide an address value which can be used to call the
subprogram by means of an address clause as in the following example:

procedure K is ...

procedure L;

for L’Address use K’Address;

pragma Import (Ada, L);
A call to L is then expected to result in a call to K. In Ada 83, where there were no access-
to-subprogram values, this was a common work-around for getting the effect of an indirect

Chapter 2: Implementation Defined Attributes 69

call. GNAT implements the above use of Address and the technique illustrated by the
example code works correctly.

However, for some purposes, it is useful to have the address of the start of the gen-
erated code for the subprogram. On some architectures, this is not necessarily the same
as the Address value described above. For example, the Address value may reference a
subprogram descriptor rather than the subprogram itself.

The ’Code_Address attribute, which can only be applied to subprogram entities, always
returns the address of the start of the generated code of the specified subprogram, which
may or may not be the same value as is returned by the corresponding ’Address attribute.

Default_Bit_Order

Standard’Default_Bit_Order (Standard is the only permissible prefix), provides the value
System.Default_Bit_Order as a Pos value (0 for High_Order_First, 1 for Low_Order_
First). This is used to construct the definition of Default_Bit_Order in package System.

Descriptor_Size

Non-static attribute Descriptor_Size returns the size in bits of the descriptor allocated
for a type. The result is non-zero only for unconstrained array types and the returned value
is of type universal integer. In GNAT, an array descriptor contains bounds information and
is located immediately before the first element of the array.

type Unconstr_Array is array (Positive range <>) of Boolean;
Put_Line ("Descriptor size = " & Unconstr_Array’Descriptor_Size’Img) ;

The attribute takes into account any additional padding due to type alignment. In the
example above, the descriptor contains two values of type Positive representing the low
and high bound. Since Positive has a size of 31 bits and an alignment of 4, the descriptor
size is 2 * Positive’Size + 2 or 64 bits.

Elaborated

The prefix of the ’Elaborated attribute must be a unit name. The value is a Boolean which
indicates whether or not the given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic elaboration checking, but it
can also be used in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no elaboration, the value
is always False for such units.

Elab_Body

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the body of the referenced unit. This
is used in the main generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in which it is useful
to be able to call this elaboration procedure from Ada code, e.g. if it is necessary to do
selective re-elaboration to fix some error.

70 GNAT Reference Manual

Elab_Spec

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the spec of the referenced unit. This is
used in the main generated elaboration procedure by the binder and is not normally used in
any other context. However, there may be specialized situations in which it is useful to be
able to call this elaboration procedure from Ada code, e.g. if it is necessary to do selective
re-elaboration to fix some error.

Elab_Subp_Body

This attribute can only be applied to a library level subprogram name and is only allowed
in CodePeer mode. It returns the entity for the corresponding elaboration procedure for
elaborating the body of the referenced subprogram unit. This is used in the main generated
elaboration procedure by the binder in CodePeer mode only and is unrecognized otherwise.

Emax

The Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Enabled

The Enabled attribute allows an application program to check at compile time to see if
the designated check is currently enabled. The prefix is a simple identifier, referencing any
predefined check name (other than A1l_Checks) or a check name introduced by pragma
Check_Name. If no argument is given for the attribute, the check is for the general state
of the check, if an argument is given, then it is an entity name, and the check indicates
whether an Suppress or Unsuppress has been given naming the entity (if not, then the
argument is ignored).

Note that instantiations inherit the check status at the point of the instantiation, so a
useful idiom is to have a library package that introduces a check name with pragma Check_
Name, and then contains generic packages or subprograms which use the Enabled attribute
to see if the check is enabled. A user of this package can then issue a pragma Suppress or
pragma Unsuppress before instantiating the package or subprogram, controlling whether
the check will be present.

Enum_Rep

For every enumeration subtype S, S’Enum_Rep denotes a function with the following spec:
function S’Enum_Rep (Arg : S’Base)
return Universal_Integer;
It is also allowable to apply Enum_Rep directly to an object of an enumeration type or to
a non-overloaded enumeration literal. In this case S’Enum_Rep is equivalent to typ’Enum_
Rep(S) where typ is the type of the enumeration literal or object.

The function returns the representation value for the given enumeration value. This
will be equal to value of the Pos attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e. the result is static if the argument is static).

Chapter 2: Implementation Defined Attributes 71

S’Enum_Rep can also be used with integer types and objects, in which case it simply
returns the integer value. The reason for this is to allow it to be used for (<>) discrete
formal arguments in a generic unit that can be instantiated with either enumeration types
or integer types. Note that if Enum_Rep is used on a modular type whose upper bound
exceeds the upper bound of the largest signed integer type, and the argument is a variable,
so that the universal integer calculation is done at run time, then the call to Enum_Rep may
raise Constraint_Error.

Enum_Val

For every enumeration subtype S, S’Enum_Val denotes a function with the following spec:
function S’Enum_Val (Arg : Universal_Integer)
return S’Base;
The function returns the enumeration value whose representation matches the argument, or
raises Constraint_Error if no enumeration literal of the type has the matching value. This
will be equal to value of the Val attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e. the result is static if the argument is static).

Epsilon

The Epsilon attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Fixed_Value

For every fixed-point type S, S’Fixed_Value denotes a function with the following specifi-
cation:

function S’Fixed_Value (Arg : Universal_Integer)

return S;

The value returned is the fixed-point value V such that

V = Arg * S’Small
The effect is thus similar to first converting the argument to the integer type used to
represent S, and then doing an unchecked conversion to the fixed-point type. The difference
is that there are full range checks, to ensure that the result is in range. This attribute is
primarily intended for use in implementation of the input-output functions for fixed-point
values.

Has_Access_Values

The prefix of the Has_Access_Values attribute is a type. The result is a Boolean value
which is True if the is an access type, or is a composite type with a component (at any
nesting depth) that is an access type, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

Has_Discriminants

The prefix of the Has_Discriminants attribute is a type. The result is a Boolean value
which is True if the type has discriminants, and False otherwise. The intended use of this

72 GNAT Reference Manual

attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has discriminants.

Img
The Img attribute differs from Image in that it may be applied to objects as well as types, in
which case it gives the Image for the subtype of the object. This is convenient for debugging;:
Put_Line ("X = " & X’Img);
has the same meaning as the more verbose:
Put_Line ("X = " & T’Image (X));
where T is the (sub)type of the object X.

Integer_Value

For every integer type S, S’ Integer_Value denotes a function with the following spec:

function S’Integer_Value (Arg : Universal_Fixed)
return S;

The value returned is the integer value V, such that

Arg = V * T’Small
where T is the type of Arg. The effect is thus similar to first doing an unchecked conversion
from the fixed-point type to its corresponding implementation type, and then converting the
result to the target integer type. The difference is that there are full range checks, to ensure
that the result is in range. This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Invalid_Value

For every scalar type S, S’Invalid_Value returns an undefined value of the type. If possi-
ble this value is an invalid representation for the type. The value returned is identical to
the value used to initialize an otherwise uninitialized value of the type if pragma Initial-
ize_Scalars is used, including the ability to modify the value with the binder -Sxx flag and
relevant environment variables at run time.

Large

The Large attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Machine_Size

This attribute is identical to the Object_Size attribute. It is provided for compatibility
with the DEC Ada 83 attribute of this name.

Mantissa

The Mantissa attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Chapter 2: Implementation Defined Attributes 73

Max_Interrupt_Priority

Standard’Max_Interrupt_Priority (Standard is the only permissible prefix), provides
the same value as System.Max_Interrupt_Priority.

Max_Priority

Standard’Max_Priority (Standard is the only permissible prefix) provides the same value
as System.Max_Priority.

Maximum_Alignment

Standard’Maximum_Alignment (Standard is the only permissible prefix) provides the max-
imum useful alignment value for the target. This is a static value that can be used to specify
the alignment for an object, guaranteeing that it is properly aligned in all cases.

Mechanism_Code

function’Mechanism_Code yields an integer code for the mechanism used for the result of
function, and subprogram’Mechanism_Code (n) yields the mechanism used for formal pa-
rameter number n (a static integer value with 1 meaning the first parameter) of subprogram.
The code returned is:

by copy (value)

by reference

by descriptor (default descriptor class)

by descriptor (UBS: unaligned bit string)

by descriptor (UBSB: aligned bit string with arbitrary bounds)

by descriptor (S: string, also scalar access type parameter)

by descriptor (SB: string with arbitrary bounds)

© 0 N O Ot ke W N

(
(
(
by descriptor (UBA: unaligned bit array)
(
(
(

by descriptor (A: contiguous array)
10 by descriptor (NCA: non-contiguous array)
Values from 3 through 10 are only relevant to Digital OpenVMS implementations.

Null_Parameter

A reference T’Null_Parameter denotes an imaginary object of type or subtype T allocated
at machine address zero. The attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subprogram call. In either case, the subprogram
must be imported.

The identity of the object is represented by the address zero in the argument list, inde-
pendent of the passing mechanism (explicit or default).

This capability is needed to specify that a zero address should be passed for a record or
other composite object passed by reference. There is no way of indicating this without the
Null_Parameter attribute.

74 GNAT Reference Manual

Object_Size

The size of an object is not necessarily the same as the size of the type of an object. This is
because by default object sizes are increased to be a multiple of the alignment of the object.
For example, Natural’Size is 31, but by default objects of type Natural will have a size
of 32 bits. Similarly, a record containing an integer and a character:

type Rec is record
I : Integer;
C : Character;
end record;

will have a size of 40 (that is Rec’Size will be 40). The alignment will be 4, because of the
integer field, and so the default size of record objects for this type will be 64 (8 bytes).

Old

The attribute Prefix’Old can be used within a subprogram body or within a precondition
or postcondition pragma. The effect is to refer to the value of the prefix on entry. So
for example if you have an argument of a record type X called Argl, you can refer to
Argl.Field’Old which yields the value of Argl.Field on entry. The implementation simply
involves generating an object declaration which captures the value on entry. The prefix must
denote an object of a nonlimited type (since limited types cannot be copied to capture their
values) and it must not reference a local variable (since local variables do not exist at
subprogram entry time). Note that the variable introduced by a quantified expression is
a local variable. The following example shows the use of ’Old to implement a test of a
postcondition:

with 0ld_Pkg;
procedure 01d is
begin

01d_Pkg.Incr;
end 01d;

package 0ld_Pkg is
procedure Incr;
end 01d_Pkg;

package body 01d_Pkg is
Count : Natural := O0;

procedure Incr is
begin
. code manipulating the value of Count

pragma Assert (Count = Count’0ld + 1);
end Incr;
end 01d_Pkg;

Note that it is allowed to apply ’Old to a constant entity, but this will result in a warning,
since the old and new values will always be the same.

Passed_By_Reference

type ’Passed_By_Reference for any subtype type returns a value of type Boolean value
that is True if the type is normally passed by reference and False if the type is normally

Chapter 2: Implementation Defined Attributes 75

passed by copy in calls. For scalar types, the result is always False and is static. For
non-scalar types, the result is non-static.

Pool_Address

X’Pool_Address for any object X returns the address of X within its storage pool. This is
the same as X’Address, except that for an unconstrained array whose bounds are allocated
just before the first component, X’Pool_Address returns the address of those bounds,
whereas X’ Address returns the address of the first component.

Here, we are interpreting “storage pool” broadly to mean “wherever the object is al-
located”, which could be a user-defined storage pool, the global heap, on the stack, or in
a static memory area. For an object created by new, Ptr.all’Pool_Address is what is
passed to Allocate and returned from Deallocate.

Range_Length

type ’Range_Length for any discrete type type yields the number of values represented by
the subtype (zero for a null range). The result is static for static subtypes. Range_Length
applied to the index subtype of a one dimensional array always gives the same result as
Range applied to the array itself.

Ref

The System.Address’Ref (System.Address is the only permissible prefix) denotes a func-
tion identical to System.Storage_Elements.To_Address except that it is a static attribute.
See [To_Address]|, page 77 for more details.

Result

function’Result can only be used with in a Postcondition pragma for a function. The
prefix must be the name of the corresponding function. This is used to refer to the result
of the function in the postcondition expression. For a further discussion of the use of this
attribute and examples of its use, see the description of pragma Postcondition.

Safe_Emax

The Safe_Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Safe_Large

The Safe_Large attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

Simple_Storage_Pool

For every nonformal, nonderived access-to-object type Acc, the representation attribute
Simple_Storage_Pool may be specified via an attribute_definition_clause (or by specifying
the equivalent aspect):

76 GNAT Reference Manual

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc’Simple_Storage_Pool use My_Pool;

The name given in an attribute_definition_clause for the Simple_Storage_Pool attribute
shall denote a variable of a “simple storage pool type” (see pragma Simple_Storage_Pool_

Type).
The use of this attribute is only allowed for a prefix denoting a type for which it has

been specified. The type of the attribute is the type of the variable specified as the simple
storage pool of the access type, and the attribute denotes that variable.

It is illegal to specify both Storage_Pool and Simple_Storage_Pool for the same access
type.

If the Simple_Storage_Pool attribute has been specified for an access type, then ap-
plying the Storage_Pool attribute to the type is flagged with a warning and its evaluation
raises the exception Program_Error.

If the Simple_Storage_Pool attribute has been specified for an access type S, then the
evaluation of the attribute S’Storage_Size returns the result of calling Storage_Size
(S’Simple_Storage_Pool), which is intended to indicate the number of storage elements
reserved for the simple storage pool. If the Storage_Size function has not been defined for
the simple storage pool type, then this attribute returns zero.

If an access type S has a specified simple storage pool of type SSP, then the evaluation
of an allocator for that access type calls the primitive Allocate procedure for type SSP,
passing S’Simple_Storage_Pool as the pool parameter. The detailed semantics of such
allocators is the same as those defined for allocators in section 13.11 of the Ada Reference
Manual, with the term “simple storage pool” substituted for “storage pool”.

If an access type S has a specified simple storage pool of type SSP, then a call to an
instance of the Ada.Unchecked_Deallocation for that access type invokes the primitive
Deallocate procedure for type SSP, passing S’Simple_Storage_Pool as the pool param-
eter. The detailed semantics of such unchecked deallocations is the same as defined in
section 13.11.2 of the Ada Reference Manual, except that the term “simple storage pool” is
substituted for “storage pool”.

Small

The Small attribute is defined in Ada 95 (and Ada 2005) only for fixed-point types. GNAT
also allows this attribute to be applied to floating-point types for compatibility with Ada 83.
See the Ada 83 reference manual for an exact description of the semantics of this attribute
when applied to floating-point types.

Storage_Unit

Standard’Storage_Unit (Standard is the only permissible prefix) provides the same value
as System.Storage_Unit.

Chapter 2: Implementation Defined Attributes 7

Stub_Type

The GNAT implementation of remote access-to-classwide types is organized as described
in AARM section E.4 (20.t): a value of an RACW type (designating a remote object) is
represented as a normal access value, pointing to a "stub" object which in turn contains the
necessary information to contact the designated remote object. A call on any dispatching
operation of such a stub object does the remote call, if necessary, using the information in
the stub object to locate the target partition, etc.

For a prefix T that denotes a remote access-to-classwide type, T’ Stub_Type denotes the
type of the corresponding stub objects.

By construction, the layout of T’Stub_Type is identical to that of type RACW_Stub_Type
declared in the internal implementation-defined unit System.Partition_Interface. Use
of this attribute will create an implicit dependency on this unit.

System_Allocator_Alignment

Standard’System_Allocator_Alignment (Standard is the only permissible prefix) pro-
vides the observable guaranted to be honored by the system allocator (malloc). This is a
static value that can be used in user storage pools based on malloc either to reject allocation
with alignment too large or to enable a realignment circuitry if the alignment request is
larger than this value.

Target_Name

Standard’Target_Name (Standard is the only permissible prefix) provides a static string
value that identifies the target for the current compilation. For GCC implementations, this
is the standard gcc target name without the terminating slash (for example, GNAT 5.0 on
windows yields "i586-pc-mingw32msv").

Tick

Standard’Tick (Standard is the only permissible prefix) provides the same value as
System.Tick,

To_Address

The System’To_Address (System is the only permissible prefix) denotes a function iden-
tical to System.Storage_Elements.To_Address except that it is a static attribute. This
means that if its argument is a static expression, then the result of the attribute is a static
expression. The result is that such an expression can be used in contexts (e.g. preelaborable
packages) which require a static expression and where the function call could not be used
(since the function call is always non-static, even if its argument is static).

Type_Class

type’Type_Class for any type or subtype type yields the value of the type class for the full
type of type. If type is a generic formal type, the value is the value for the corresponding
actual subtype. The value of this attribute is of type System.Aux_DEC.Type_Class, which
has the following definition:

78 GNAT Reference Manual

type Type_Class is

(Type_Class_Enumeration,

Type_Class_Integer,

Type_Class_Fixed_Point,

Type_Class_Floating_Point,

Type_Class_Array,

Type_Class_Record,

Type_Class_Access,

Type_Class_Task,

Type_Class_Address);
Protected types yield the value Type_Class_Task, which thus applies to all concurrent
types. This attribute is designed to be compatible with the DEC Ada 83 attribute of the

Salne narme.

UET_Address

The UET_Address attribute can only be used for a prefix which denotes a library pack-
age. It yields the address of the unit exception table when zero cost exception handling is
used. This attribute is intended only for use within the GNAT implementation. See the
unit Ada.Exceptions in files ‘a-except.ads’ and ‘a-except.adb’ for details on how this
attribute is used in the implementation.

Unconstrained_Array

The Unconstrained_Array attribute can be used with a prefix that denotes any type or
subtype. It is a static attribute that yields True if the prefix designates an unconstrained
array, and False otherwise. In a generic instance, the result is still static, and yields the
result of applying this test to the generic actual.

Universal_Literal _String

The prefix of Universal_Literal_String must be a named number. The static result is
the string consisting of the characters of the number as defined in the original source. This
allows the user program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which would preclude
their use as numbers).

For example, the following program prints the first 50 digits of pi:

with Text_I0; use Text_I0;
with Ada.Numerics;
procedure Pi is
begin
Put (Ada.Numerics.Pi’Universal_Literal_String);
end;

Unrestricted_Access

The Unrestricted_Access attribute is similar to Access except that all accessibility and
aliased view checks are omitted. This is a user-beware attribute. It is similar to Address, for
which it is a desirable replacement where the value desired is an access type. In other words,
its effect is identical to first applying the Address attribute and then doing an unchecked
conversion to a desired a