[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

8.10.6 Complex Number Operations

@@ A lot of details missing here

The following sample programs illustrates most of the Complex type operations.

 
program ComplexOperationsDemo (Output);

var z1, z2: Complex; Len, Angle: Real;

begin z1 := Cmplx (2, 1); WriteLn; WriteLn ('Complex number z1 is: (', Re (z1) : 1, ',', Im (z1) : 1, ')'); WriteLn; z2 := Conjugate(z1); { GPC extension } WriteLn ('Conjugate of z1 is: (', Re (z2) : 1, ',', Im (z2) : 1, ')'); WriteLn; Len := Abs (z1); Angle := Arg (z1); WriteLn ('The polar representation of z1 is: Length=', Len : 1, ', Angle=', Angle : 1); WriteLn; z2 := Polar (Len, Angle); WriteLn ('Converting (Length, Angle) back to (x, y) gives: (', Re (z2) : 1, ',', Im (z2) : 1, ')'); WriteLn; WriteLn ('The following operations operate on the complex number z1'); WriteLn; z2 := ArcTan (z1); WriteLn ('ArcTan (z1) = (', Re (z2), ', ', Im (z2), ')'); WriteLn; z2 := z1 ** 3.141; WriteLn ('z1 ** 3.141 =', Re (z2), ', ', Im (z2), ')'); WriteLn; z2 := Sin (z1); WriteLn ('Sin (z1) = (', Re (z2), ', ', Im (z2), ')'); WriteLn ('(Cos, Ln, Exp, SqRt and Sqr exist also.)'); WriteLn; z2 := z1 pow 8; WriteLn ('z1 pow 8 = (', Re (z2), ', ', Im (z2), ')'); WriteLn; z2 := z1 pow (-8); WriteLn ('z1 pow (-8) = (', Re (z2), ', ', Im (z2), ')'); end.



This document was generated by Frank Heckenbach on May, 10 2002 using texi2html